ELLIS contributions to NeurIPS 2023


The NeurIPS conference is an annual highlight for the global machine learning research community. This year, it takes place from 10 - 16 December 2023 in New Orleans (USA). It is an opportunity for scientists to present and discuss the latest cutting-edge AI research and to connect with peers.

Out of all conference contributions, around 500 include contributions from ELLIS members. The following list provides an overview and highlights the names of ELLIS members in bold.

If your contirbution or name is missing here, feel free to inform us via pr@ellis.eu.

NeurIPS 2023 poster

#

Paper Title

List of authors (ELLIS members in bold)

1

What is Flagged in Uncertainty Quantification? Latent Density Models for Uncertainty Categorization

Hao Sun, Boris van Breugel, Jonathan Crabbé, Nabeel Seedat, Mihaela van der Schaar

2

Discover and Align Taxonomic Context Priors for Open-world Semi-Supervised Learning

Yu Wang, Zhun Zhong, Pengchong Qiao, Xuxin Cheng, Xiawu Zheng, Chang Liu, Nicu Sebe, Rongrong Ji, Jie Chen

3

The Crucial Role of Normalization in Sharpness-Aware Minimization

Yan Dai, Kwangjun Ahn, Suvrit Sra

4

Temporal Causal Mediation through a Point Process: Direct and Indirect Effects of Healthcare Interventions

Çağlar Hızlı, S. T. John, Anne Tuulikki Juuti, Tuure Tapani Saarinen, Kirsi Hannele Pietiläinen, Pekka Marttinen

5

Universality and Limitations of Prompt Tuning

Yihan Wang, Jatin Chauhan, Wei Wang, Cho-Jui Hsieh

6

Stabilized Neural Differential Equations for Learning Dynamics with Explicit Constraints

Alistair White, Niki Kilbertus, Maximilian Gelbrecht, Niklas Boers

7

Automated Classification of Model Errors on ImageNet

Momchil Peychev, Mark Niklas Mueller, Marc Fischer, Martin Vechev

8

A Novel Framework for Policy Mirror Descent with General Parameterization and Linear Convergence

Carlo Alfano, Rui Yuan, Patrick Rebeschini

9

What Distributions are Robust to Indiscriminate Poisoning Attacks for Linear Learners?

Fnu Suya, Xiao Zhang, Yuan Tian, David Evans

10

Computing Optimal Equilibria and Mechanisms via Learning in Zero-Sum Extensive-Form Games

Brian Hu Zhang, Gabriele Farina, Ioannis Anagnostides, Federico Cacciamani, Stephen Marcus McAleer, Andreas Alexander Haupt, Andrea CelliNicola Gatti, Vincent Conitzer, Tuomas Sandholm

11

Expressivity-Preserving GNN Simulation

Fabian Jogl, Maximilian Thiessen, Thomas Gärtner

12

Covariance-adaptive best arm identification

El Mehdi Saad, Gilles Blanchard, Nicolas Verzelen

13

Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension

Moritz Haas, David Holzmüller, Ulrike von LuxburgIngo Steinwart

14

Star-Shaped Denoising Diffusion Probabilistic Models

Andrey Okhotin, Dmitry Molchanov, Arkhipkin Sergeevich Vladimir, Grigory Bartosh, Viktor Ohanesian, Aibek Alanov, Dmitry P. Vetrov

15

What Can We Learn from Unlearnable Datasets?

Pedro Sandoval-Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein

16

SNEkhorn: Dimension Reduction with Symmetric Entropic Affinities

Hugues Van Assel, Titouan Vayer, Rémi FlamaryNicolas Courty

17

Learning Causal Models under Independent Changes

Sarah Mameche, David Kaltenpoth, Jilles Vreeken

18

Color Equivariant Convolutional Networks

Attila Lengyel, Ombretta Strafforello, Robert-Jan Bruintjes, Alexander Gielisse, Jan van Gemert

19

Asymptotics of Bayesian Uncertainty Estimation in Random Features Regression

Youngsoo Baek, Samuel Berchuck, Sayan Mukherjee

20

Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted Networks

Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, Frank Hutter

21

Towards Data-Agnostic Pruning At Initialization: What Makes a Good Sparse Mask?

Hoang Pham, The-Anh Ta, Shiwei Liu, Lichuan Xiang, Dung D. Le, Hongkai Wen, Long Tran-Thanh

22

Practical Equivariances via Relational Conditional Neural Processes

Daolang Huang, Manuel Haussmann, Ulpu Remes, S. T. John, Grégoire Clarté, Kevin Sebastian LuckSamuel KaskiLuigi Acerbi

23

For SALE: State-Action Representation Learning for Deep Reinforcement Learning

Scott Fujimoto, Wei-Di Chang, Edward J. Smith, Shixiang Shane Gu, Doina Precup, David Meger

24

The Tunnel Effect: Building Data Representations in Deep Neural Networks

Wojciech Masarczyk, Mateusz Ostaszewski, Ehsan Imani, Razvan PascanuPiotr Miłos ́, Tomasz Trzcinski

25

Optimal Algorithms for the Inhomogeneous Spiked Wigner Model

Alexander Pak, Justin Ko, Florent Krzakala

26

LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical Imaging via Second-order Graph Matching

Duy Minh Ho Nguyen, Hoang Nguyen, Nghiem Tuong Diep, Tan Ngoc Pham, Tri Cao, Binh T. Nguyen, Paul Swoboda, Nhat Ho, Shadi Albarqouni, Pengtao Xie, Daniel Sonntag, Mathias Niepert

27

Do Not Marginalize Mechanisms, Rather Consolidate!

Moritz Willig, Matej Zečević, Devendra Singh Dhami, Kristian Kersting

28

Taming Local Effects in Graph-based Spatiotemporal Forecasting

Andrea Cini, Ivan Marisca, Daniele Zambon, Cesare Alippi

29

BayesDAG: Gradient-Based Posterior Inference for Causal Discovery

Yashas Annadani, Nick Pawlowski, Joel Jennings, Stefan BauerCheng Zhang, Wenbo Gong

30

Transitivity Recovering Decompositions: Interpretable and Robust Fine-Grained Relationships

Abhra Chaudhuri, Massimiliano ManciniZeynep AkataAnjan Dutta

31

Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability

Maciej Falkiewicz, Naoya Takeishi, Imahn Shekhzadeh, Antoine Wehenkel, Arnaud Delaunoy, Gilles Louppe, Alexandros Kalousis

32

Compositional Sculpting of Iterative Generative Processes

Timur Garipov, Sebastiaan De Peuter, Ge Yang, Vikas GargSamuel Kaski, Tommi S. Jaakkola

33

GAUCHE: A Library for Gaussian Processes in Chemistry

Ryan-Rhys Griffiths, Leo Klarner, Henry Moss, Aditya Ravuri, Sang T. Truong, Yuanqi Du, Samuel Don Stanton, Gary Tom, Bojana Ranković, Arian Rokkum Jamasb, Aryan Deshwal, Julius Schwartz, Austin Tripp, Gregory Kell, Simon Frieder, Anthony Bourached, Alex James Chan, Jacob Moss, Chengzhi Guo, Johannes P. Dürholt, Saudamini Chaurasia, Ji Won Park, Felix Strieth-Kalthoff, Alpha Lee, Bingqing Cheng, Alan Aspuru-Guzik, Philippe Schwaller, Jian Tang

34

Structured Voronoi Sampling

Afra Amini, Li Du, Ryan Cotterell

35

PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning

Neeratyoy Mallik, Eddie Bergman, Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius Lindauer, Luigi Nardi, Frank Hutter

36

Minimax Forward and Backward Learning of Evolving Tasks with Performance Guarantees

Veronica Alvarez, Santiago Mazuelas, Jose A. Lozano

37

Sample Complexity Bounds for Score-Matching: Causal Discovery and Generative Modeling

Zhenyu Zhu, Francesco LocatelloVolkan Cevher

38

(S)GD over Diagonal Linear Networks: Implicit bias, Large Stepsizes and Edge of Stability

Mathieu Even, Scott Pesme, Suriya Gunasekar, Nicolas Flammarion

39

Knowledge Distillation Performs Partial Variance Reduction

Mher Safaryan, Alexandra Peste, Dan Alistarh

40

Add and Thin: Diffusion for Temporal Point Processes

David Lüdke, Marin Biloš, Oleksandr Shchur, Marten Lienen, Stephan Günnemann

41

Exponential Lower Bounds for Fictitious Play in Potential Games

Ioannis Panageas, Nikolas Patris, Stratis Skoulakis, Volkan Cevher

42

No Train No Gain: Revisiting Efficient Training Algorithms For Transformer-based Language Models

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, Matt Kusner

43

Optimistic Active Exploration of Dynamical Systems

Bhavya Sukhija, Lenart Treven, Cansu Sancaktar, Sebastian Blaes, Stelian Coros, Andreas Krause

44

Not All Neuro-Symbolic Concepts Are Created Equal: Analysis and Mitigation of Reasoning Shortcuts

Emanuele Marconato, Stefano Teso, Antonio VergariAndrea Passerini

45

Can You Rely on Your Model Evaluation? Improving Model Evaluation with Synthetic Test Data

Boris van Breugel, Nabeel Seedat, Fergus Imrie, Mihaela van der Schaar

46

Object-Centric Learning for Real-World Videos by Predicting Temporal Feature Similarities

Andrii Zadaianchuk, Maximilian Seitzer, Georg Martius

47

A Neural Collapse Perspective on Feature Evolution in Graph Neural Networks

Vignesh Kothapalli, Tom Tirer, Joan Bruna

48

Meta-in-context learning in large language models

Julian Coda-Forno, Marcel Binz, Zeynep AkataMatthew Botvinick, Jane X Wang, Eric Schulz

49

What’s Left? Concept Grounding with Logic-Enhanced Foundation Models

Joy Hsu, Jiayuan Mao, Joshua B. Tenenbaum, Jiajun Wu

50

Retrieval-Augmented Multiple Instance Learning

Yufei CUI, Ziquan Liu, Yixin CHEN, Yuchen Lu, Xinyue Yu, Xue Liu, Tei-Wei Kuo, Miguel R. D. Rodrigues, Chun Jason Xue, Antoni B. Chan

51

Soft-Unification in Deep Probabilistic Logic

Jaron Maene, Luc De Raedt

52

Focused Transformer: Contrastive Training for Context Scaling

Szymon Tworkowski, Konrad Staniszewski, Mikołaj Pacek, Yuhuai Wu, Henryk Michalewski, Piotr Miłos ́

53

Managing Temporal Resolution in Continuous Value Estimation: A Fundamental Trade-off

Zichen Zhang, Johannes Kirschner, Junxi Zhang, Francesco Zanini, Alex Ayoub, Masood Dehghan, Dale Schuurmans

54

False Discovery Proportion control for aggregated Knockoffs

Alexandre Blain, Bertrand Thirion, Olivier Grisel, Pierre Neuvial

55

Swarm Reinforcement Learning for Adaptive Mesh Refinement

Niklas Freymuth, Philipp Dahlinger, Tobias Daniel Würth, Simon Reisch, Luise Kärger, Gerhard Neumann

56

On the impact of activation and normalization in obtaining isometric embeddings at initialization

Amir Joudaki, Hadi Daneshmand, Francis Bach

57

Diffusion Schrödinger Bridge Matching

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, Arnaud Doucet

58

Reinforcement Learning with Simple Sequence Priors

Tankred Saanum, Noemi Elteto, Peter Dayan, Marcel Binz, Eric Schulz

59

Affinity-Aware Graph Networks

Ameya Velingker, Ali Kemal Sinop, Ira Ktena, Petar Veličković, Sreenivas Gollapudi

60

One Risk to Rule Them All: A Risk-Sensitive Perspective on Model-Based Offline Reinforcement Learning

Marc Rigter, Bruno Lacerda, Nick Hawes

61

Are GATs Out of Balance?

Nimrah Mustafa, Aleksandar Bojchevski, Rebekka Burkholz

62

LambdaBeam: Neural Program Search with Higher-Order Functions and Lambdas

Kensen Shi, Hanjun Dai, Wen-Ding Li, Kevin Ellis, Charles Sutton

63

Self-Predictive Universal AI

Elliot Catt, Jordi Grau-Moya, Marcus Hutter, Matthew Aitchison, Tim Genewein, Gregoire Deletang, Li Kevin Wenliang, Joel Veness

64

Kernelized Reinforcement Learning with Order Optimal Regret Bounds

Sattar Vakili, Julia Olkhovskaya

65

Recurrent Hypernetworks are Surprisingly Strong in Meta-RL

Jacob Beck, Risto Vuorio, Zheng Xiong, Shimon Whiteson

66

Principled Weight Initialisation for Input-Convex Neural Networks

Pieter-Jan Hoedt, Günter Klambauer

67

Causal Effect Identification in Uncertain Causal Networks

Sina Akbari, Fateme Jamshidi, Ehsan Mokhtarian, Matthew James Vowels, Jalal Etesami, Negar Kiyavash

68

Latent Space Translation via Semantic Alignment

Valentino Maiorca, Luca Moschella, Antonio Norelli, Marco Fumero, Francesco LocatelloEmanuele Rodolá 

69

Riemannian stochastic optimization methods avoid strict saddle points

Ya-Ping Hsieh, Mohammad Reza Karimi Jaghargh, Andreas Krause, Panayotis Mertikopoulos

70

Successor-Predecessor Intrinsic Exploration

Changmin Yu, Neil Burgess, Maneesh Sahani, Samuel Gershman

71

Analyzing the Sample Complexity of Self-Supervised Image Reconstruction Methods

Tobit Klug, Dogukan Atik, Reinhard Heckel

72

Particle-based Variational Inference with Generalized Wasserstein Gradient Flow

Ziheng Cheng, Shiyue Zhang, Longlin Yu, Cheng Zhang

73

Distributional Policy Evaluation: a Maximum Entropy approach to Representation Learning

Riccardo Zamboni, Alberto Maria MetelliMarcello Restelli

74

Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data

Siyuan Guo, Viktor Tóth, Bernhard SchölkopfFerenc Huszár

75

Identifiability Guarantees for Causal Disentanglement from Soft Interventions

Jiaqi Zhang, Kristjan Greenewald, Chandler Squires, Akash Srivastava, Karthikeyan Shanmugam, Caroline Uhler

76

Active Observing in Continuous-time Control

Samuel Holt, Alihan Hüyük, Mihaela van der Schaar

77

A Scale-Invariant Sorting Criterion to Find a Causal Order in Additive Noise Models

Alexander Gilbert Reisach, Myriam Tami, Christof Seiler, Antoine Chambaz, Sebastian Weichwald

78

Marginal Density Ratio for Off-Policy Evaluation in Contextual Bandits

Muhammad Faaiz Taufiq, Arnaud Doucet, Rob Cornish, Jean-Francois Ton

79

RegBN: Batch Normalization of Multimodal Data with Regularization

MORTEZA GHAHREMANI, Christian Wachinger

80

Shape Non-rigid Kinematics (SNK): A Zero-Shot Method for Non-Rigid Shape Matching via Unsupervised Functional Map Regularized Reconstruction

Souhaib Attaiki, Maks Ovsjanikov

81

Differentiable Clustering with Perturbed Spanning Forests

Lawrence Stewart, Francis Bach, Felipe Llinares-López, Quentin Berthet

82

Multiclass Boosting: Simple and Intuitive Weak Learning Criteria

Nataly Brukhim, Amit Daniely, Yishay Mansour, Shay Moran

83

Evaluating Robustness and Uncertainty of Graph Models Under Structural Distributional Shifts

Gleb Bazhenov, Denis Kuznedelev, Andrey Malinin, Artem Babenko, Liudmila Prokhorenkova

84

PromptRestorer: A Prompting Image Restoration Method with Degradation Perception

Cong Wang, Jinshan Pan, Wei Wang, Jiangxin Dong, Mengzhu Wang, Yakun Ju, Junyang Chen

85

$H$-Consistency Bounds: Characterization and Extensions

Anqi Mao, Mehryar Mohri, Yutao Zhong

86

Contrastive Training of Complex-Valued Autoencoders for Object Discovery

Aleksandar Stanić, Anand Gopalakrishnan, Kazuki Irie, Jürgen Schmidhuber

87

Thinker: Learning to Plan and Act

Stephen Chung, Ivan Anokhin, David Krueger

88

Reliable Off-Policy Learning for Dosage Combinations

Jonas Schweisthal, Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel

89

Efficient Sampling of Stochastic Differential Equations with Positive Semi-Definite Models

Anant Raj, Umut Simsekli, Alessandro Rudi

90

Beyond Average Return in Markov Decision Processes

Alexandre Marthe, Aurélien Garivier, Claire Vernade

91

(Provable) Adversarial Robustness for Group Equivariant Tasks: Graphs, Point Clouds, Molecules, and More

Jan Schuchardt, Yan Scholten, Stephan Günnemann

92

Learn to Categorize or Categorize to Learn? Self-Coding for Generalized Category Discovery

Sarah Rastegar, Hazel Doughty, Cees G. M. Snoek

93

DiffComplete: Diffusion-based Generative 3D Shape Completion

Ruihang Chu, Enze Xie, Shentong Mo, Zhenguo Li, Matthias Nießner, Chi-Wing Fu, Jiaya Jia

94

Spontaneous symmetry breaking in generative diffusion models

Gabriel Raya, Luca Ambrogioni

95

Rewarded soups: towards Pareto-optimal alignment by interpolating weights fine-tuned on diverse rewards

Alexandre Rame, Guillaume Couairon, Corentin Dancette, Jean-Baptiste Gaya, Mustafa Shukor, Laure Soulier, Matthieu Cord

96

An information-theoretic quantification of the content of communication between brain regions

Marco Celotto, Jan Bím, Alejandro Tlaie, Vito De Feo, Alessandro Toso, Stefan M Lemke, Daniel Chicharro, Hamed Nili, Malte Bieler, Ileana Livia Hanganu-Opatz, Tobias H. Donner, Andrea Brovelli, Stefano Panzeri

97

Adversarial Learning for Feature Shift Detection and Correction

Mí­riam Barrabés, Daniel Mas Montserrat, Margarita Geleta, Xavier Giró-i-Nieto, Alexander G Ioannidis

98

Normalization Layers Are All That Sharpness-Aware Minimization Needs

Maximilian Mueller, Tiffany Joyce Vlaar, David Rolnick, Matthias Hein

99

Accountability in Offline Reinforcement Learning: Explaining Decisions with a Corpus of Examples

Hao Sun, Alihan Hüyük, Daniel Jarrett, Mihaela van der Schaar

100

Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition

Shuhuai Ren, Aston Zhang, Yi Zhu, Shuai Zhang, Shuai Zheng, Mu Li, Alex Smola, Xu Sun

101

A Fractional Graph Laplacian Approach to Oversmoothing

Sohir Maskey, Raffaele Paolino, Aras Bacho, Gitta Kutyniok

102

Point Cloud Completion with Pretrained Text-to-Image Diffusion Models

Yoni Kasten, Ohad Rahamim, Gal Chechik

103

When Do Graph Neural Networks Help with Node Classification? Investigating the Homophily Principle on Node Distinguishability

Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure LeskovecDoina Precup

104

Limits, approximation and size transferability for GNNs on sparse graphs via graphops

Thien Le, Stefanie Jegelka

105

Discovering General Reinforcement Learning Algorithms with Adversarial Environment Design

Matthew Thomas Jackson, Minqi Jiang, Jack Parker-Holder, Risto Vuorio, Chris Lu, Gregory Farquhar, Shimon Whiteson, Jakob Nicolaus Foerster

106

Improving Language Plasticity via Pretraining with Active Forgetting

Yihong Chen, Kelly Marchisio, Roberta Raileanu, David Ifeoluwa Adelani, Pontus StenetorpSebastian Riedel, Mikel Artetxe

107

D-CIPHER: Discovery of Closed-form Partial Differential Equations

Krzysztof Kacprzyk, Zhaozhi Qian, Mihaela van der Schaar

108

Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift

Florian Seligmann, Philipp Becker, Michael Volpp, Gerhard Neumann

109

On Masked Pre-training and the Marginal Likelihood

Pablo Moreno-Muñoz, Pol G. Recasens, Søren Hauberg

110

Maximum Independent Set: Self-Training through Dynamic Programming

Lorenzo Brusca, Lars C.P.M. Quaedvlieg, Stratis Skoulakis, Grigorios ChrysosVolkan Cevher

111

DELIFFAS: Deformable Light Fields for Fast Avatar Synthesis

YoungJoong Kwon, Lingjie Liu, Henry Fuchs, Marc Habermann, Christian Theobalt

112

Learning To Dive In Branch And Bound

Max B. Paulus, Andreas Krause

113

MultiMoDN—Multimodal, Multi-Task, Interpretable Modular Networks

Vinitra Swamy, Malika Satayeva, Jibril Frej, Thierry Bossy, Thijs Vogels, Martin JaggiTanja Käser, Mary-Anne Hartley

114

Sharp Bounds for Generalized Causal Sensitivity Analysis

Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel

115

Analyzing Vision Transformers for Image Classification in Class Embedding Space

Martina G. Vilas, Timothy Schaumlöffel, Gemma Roig

116

$p$-value Adjustment for Monotonous, Unbiased, and Fast Clustering Comparison

Kai Klede, Thomas Altstidl, Dario Zanca, Bjoern Eskofier

117

Fantastic Weights and How to Find Them: Where to Prune in Dynamic Sparse Training

Aleksandra Nowak, Bram Grooten, Decebal Constantin Mocanu, Jacek Tabor

118

Taylor TD-learning

Michele Garibbo, Maxime Robeyns, Laurence Aitchison

119

Use perturbations when learning from explanations

Juyeon Heo, Vihari Piratla, Matthew Robert Wicker, Adrian Weller

120

Hierarchical Semi-Implicit Variational Inference with Application to Diffusion Model Acceleration

Longlin Yu, Tianyu Xie, Yu Zhu, Tong Yang, Xiangyu Zhang, Cheng Zhang

121

How do Minimum-Norm Shallow Denoisers Look in Function Space?

Chen Zeno, Greg Ongie, Yaniv Blumenfeld, Nir Weinberger, Daniel Soudry

122

Finding Safe Zones of Markov Decision Processes Policies

Lee Cohen, Yishay Mansour, Michal Moshkovitz

123

Learning Provably Robust Estimators for Inverse Problems via Jittering

Anselm Krainovic, Mahdi Soltanolkotabi, Reinhard Heckel

124

Partial Matrix Completion

Elad Hazan, Adam Tauman Kalai, Varun Kanade, Clara Mohri, Y. Jennifer Sun

125

Labeling Neural Representations with Inverse Recognition

Kirill Bykov, Laura Kopf, Shinichi Nakajima, Marius Kloft, Marina MC Höhne

126

Rethinking Semi-Supervised Medical Image Segmentation: A Variance-Reduction Perspective

Chenyu You, Weicheng Dai, Yifei Min, Fenglin Liu, David A. Clifton, S Kevin Zhou, Lawrence Hamilton Staib, James s Duncan

127

Incentivizing Honesty among Competitors in Collaborative Learning and Optimization

Florian E. Dorner, Nikola Konstantinov, Georgi Stoyanov Pashaliev, Martin Vechev

128

LART: Neural Correspondence Learning with Latent Regularization Transformer for 3D Motion Transfer

Haoyu Chen, Hao Tang, Radu TimofteLuc Van GoolGuoying Zhao

129

Neural (Tangent Kernel) Collapse

Mariia Seleznova, Dana Weitzner, Raja GiryesGitta Kutyniok, Hung-Hsu Chou

130

Meek Separators and Their Applications in Targeted Causal Discovery

Kirankumar Shiragur, Jiaqi Zhang, Caroline Uhler

131

Permutation Equivariant Neural Functionals

Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace, Yiding Jiang, Samuel Sokota, J Zico Kolter, Chelsea Finn

132

Two Sides of One Coin: the Limits of Untuned SGD and the Power of Adaptive Methods

Junchi YANG, Xiang Li, Ilyas Fatkhullin, Niao He

133

Norm-guided latent space exploration for text-to-image generation

Dvir Samuel, Rami Ben-Ari, Nir Darshan, Haggai MaronGal Chechik

134

Black-Box Differential Privacy for Interactive ML

Haim Kaplan, Yishay Mansour, Shay Moran, Kobbi Nissim, Uri Stemmer

135

LaFTer: Label-Free Tuning of Zero-shot Classifier using Language and Unlabeled Image Collections

Muhammad Jehanzeb Mirza, Leonid Karlinsky, Wei Lin, Horst Possegger, Mateusz Kozinski, Rogerio Feris, Horst Bischof

136

Resilient Multiple Choice Learning: A learned scoring scheme with application to audio scene analysis

Victor Letzelter, Mathieu Fontaine, Mickael Chen, Patrick Perez, Slim Essid, Gaël Richard

137

Semantic HELM: A Human-Readable Memory for Reinforcement Learning

Fabian Paischer, Thomas Adler, Markus Hofmarcher, Sepp Hochreiter

138

Penguin: Parallel-Packed Homomorphic Encryption for Fast Graph Convolutional Network Inference

Ran Ran, Nuo Xu, Tao Liu, Wei Wang, Gang Quan, Wujie Wen

139

TRIAGE: Characterizing and auditing training data for improved regression

Nabeel Seedat, Jonathan Crabbé, Zhaozhi Qian, Mihaela van der Schaar

140

POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images

Antonín Vobecký, Oriane Siméoni, David Hurych, Spyros Gidaris, Andrei Bursuc, Patrick Perez, Josef Sivic

141

CLadder: A Benchmark to Assess Causal Reasoning Capabilities of Language Models

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng LYU, Kevin Blin, Fernando Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya SachanBernhard Schölkopf

142

GMSF: Global Matching Scene Flow

Yushan Zhang, Johan Edstedt, Bastian Wandt, Per-Erik Forssen, Maria Magnusson, Michael Felsberg

143

Compositional Foundation Models for Hierarchical Planning

Anurag Ajay, Seungwook Han, Yilun Du, Shuang Li, Abhi Gupta, Tommi S. Jaakkola, Joshua B. Tenenbaum, Leslie Pack Kaelbling, Akash Srivastava, Pulkit Agrawal

144

The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering In High Dimensions

Jonathan Schmidt, Philipp Hennig, Jörg Nick, Filip Tronarp

145

Trust Your : Gradient-based Intervention Targeting for Causal Discovery

Mateusz Olko, Michał Zając, Aleksandra Nowak, Nino Scherrer, Yashas Annadani, Stefan BauerŁukasz KucińskiPiotr Miłos ́

146

Deep Gaussian Markov Random Fields for Graph-Structured Dynamical Systems

Fiona Lippert, Bart Kranstauber, E. Emiel van Loon, Patrick Forré

147

Self-Correcting Bayesian Optimization through Bayesian Active Learning

Carl Hvarfner, Erik Orm Hellsten, Frank Hutter, Luigi Nardi

148

ZipLM: Inference-Aware Structured Pruning of Language Models

Eldar Kurtic, Elias Frantar, Dan Alistarh

149

How to Fine-tune the Model: Unified Model Shift and Model Bias Policy Optimization

Hai Zhang, Hang Yu, Junqiao Zhao, Di Zhang, Chang Huang, Hongtu Zhou, Xiao Zhang, Chen Ye

150

Zero-Shot Anomaly Detection via Batch Normalization

Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja RudolphStephan Mandt

151

Implicit Manifold Gaussian Process Regression

Bernardo Fichera, Viacheslav Borovitskiy, Andreas KrauseAude Billard

152

A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference

Emile van Krieken, Thiviyan Thanapalasingam, Jakub M. Tomczak, Frank Van Harmelen, Annette Ten Teije

153

Estimating the Rate-Distortion Function by Wasserstein Gradient Descent

Yibo Yang, Stephan Eckstein, Marcel Nutz, Stephan Mandt

154

Learning Dynamic Attribute-factored World Models for Efficient Multi-object Reinforcement Learning

Fan Feng, Sara Magliacane

155

EDGI: Equivariant Diffusion for Planning with Embodied Agents

Johann Brehmer, Joey Bose, Pim De Haan, Taco Cohen

156

Lie Point Symmetry and Physics-Informed Networks

Tara Akhound-Sadegh, Laurence Perreault-Levasseur, Johannes BrandstetterMax Welling, Siamak Ravanbakhsh

157

Kissing to Find a Match: Efficient Low-Rank Permutation Representation

Hannah Dröge, Zorah Lähner, Yuval Bahat, Onofre Martorell Nadal, Felix Heide, Michael Moeller

158

Primal-Attention: Self-attention through Asymmetric Kernel SVD in Primal Representation

Yingyi Chen, Qinghua Tao, Francesco Tonin, Johan Suykens

159

Riemannian Laplace approximations for Bayesian neural networks

Federico Bergamin, Pablo Moreno-MuñozSøren Hauberg, Georgios Arvanitidis

160

Marich: A Query-efficient Distributionally Equivalent Model Extraction Attack

Pratik Karmakar, Debabrota Basu

161

On the Ability of Graph Neural Networks to Model Interactions Between Vertices

Noam Razin, Tom Verbin, Nadav Cohen

162

LEACE: Perfect linear concept erasure in closed form

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, Stella Biderman

163

Risk-Averse Active Sensing for Timely Outcome Prediction under Cost Pressure

Yuchao Qin, Mihaela van der Schaar, Changhee Lee

164

MarioGPT: Open-Ended Text2Level Generation through Large Language Models

Shyam Sudhakaran, Miguel González-Duque, Matthias Freiberger, Claire Glanois, Elias Najarro, Sebastian Risi

165

Anchor Data Augmentation

Nora Schneider, Shirin Goshtasbpour, Fernando Perez-Cruz

166

Learning to Modulate pre-trained Models in RL

Thomas Schmied, Markus Hofmarcher, Fabian Paischer, Razvan PascanuSepp Hochreiter

167

Training Chain-of-Thought via Latent-Variable Inference

Du Phan, Matthew Douglas Hoffman, david dohan, Sholto Douglas, Tuan Anh Le, Aaron T Parisi, Pavel Sountsov, Charles Sutton, Sharad Vikram, Rif A. Saurous

168

SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D Object Pose Estimation

Haobo Jiang, Mathieu Salzmann, Zheng Dang, Jin Xie, Jian Yang

169

Optimistic Meta-Gradients

Sebastian Flennerhag, Tom Zahavy, Brendan O'Donoghue, Hado van Hasselt, András György, Satinder Singh

170

A Definition of Continual Reinforcement Learning

David Abel, Andre Barreto, Benjamin Van Roy, Doina Precup, Hado van Hasselt, Satinder Singh

171

On kernel-based statistical learning theory in the mean field limit

Christian Fiedler, Michael Herty, Sebastian Trimpe

172

Tree-Rings Watermarks: Invisible Fingerprints for Diffusion Images

Yuxin Wen, John Kirchenbauer, Jonas Geiping, Tom Goldstein

173

Anytime Model Selection in Linear Bandits

Parnian Kassraie, Nicolas Emmenegger, Andreas Krause, Aldo Pacchiano

174

Autodecoding Latent 3D Diffusion Models

Evangelos Ntavelis, Aliaksandr Siarohin, Kyle Olszewski, Chaoyang Wang, Luc Van Gool, Sergey Tulyakov

175

Real-Time Motion Prediction via Heterogeneous Polyline Transformer with Relative Pose Encoding

Zhejun Zhang, Alexander Liniger, Christos Sakaridis, Fisher YuLuc Van Gool

176

BiMatting: Efficient Video Matting via Binarization

Haotong Qin, Lei Ke, Xudong Ma, Martin Danelljan, Yu-Wing Tai, Chi-Keung Tang, Xianglong Liu, Fisher Yu

177

Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain Activities

Jingyuan Sun, Mingxiao Li, Zijiao Chen, Yunhao Zhang, Shaonan Wang, Marie-Francine Moens

178

Structured Prediction with Stronger Consistency Guarantees

Anqi Mao, Mehryar Mohri, Yutao Zhong

179

$\textbf{A}^2\textbf{CiD}^2$: Accelerating Asynchronous Communication in Decentralized Deep Learning

Adel Nabli, Eugene Belilovsky, Edouard Oyallon

180

Finding Counterfactually Optimal Action Sequences in Continuous State Spaces

Stratis Tsirtsis, Manuel Gomez Rodriguez

181

CAP: Correlation-Aware Pruning for Highly-Accurate Sparse Vision Models

Denis Kuznedelev, Eldar Kurtic, Elias Frantar, Dan Alistarh

182

ASIF: Coupled Data Turns Unimodal Models to Multimodal without Training

Antonio Norelli, Marco Fumero, Valentino Maiorca, Luca Moschella, Emanuele RodolàFrancesco Locatello

183

A Bayesian Approach To Analysing Training Data Attribution In Deep Learning

Elisa Nguyen, Minjoon Seo, Seong Joon Oh

184

Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise

Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie S. Li, Hamid Kazemi, Furong Huang, Micah Goldblum, Jonas Geiping, Tom Goldstein

185

Stochastic Approximation Algorithms for Systems of Interacting Particles

Mohammad Reza Karimi Jaghargh, Ya-Ping Hsieh, Andreas Krause

186

Latent SDEs on Homogeneous Spaces

Sebastian Zeng, Florian Graf, Roland Kwitt

187

Performance-optimized deep neural networks are evolving into worse models of inferotemporal visual cortex

Drew Linsley, Ivan F Rodriguez Rodriguez, Thomas FEL, Michael Arcaro, Saloni Sharma, Margaret Livingstone, Thomas Serre

188

Causal Imitability Under Context-Specific Independence Relations

Fateme Jamshidi, Sina Akbari, Negar Kiyavash

189

Probabilistic Invariant Learning with Randomized Linear Classifiers

Leonardo Cotta, Gal Yehuda, Assaf Schuster, Chris J. Maddison

190

Joint Training of Deep Ensembles Fails Due to Learner Collusion

Alan Jeffares, Tennison Liu, Jonathan Crabbé, Mihaela van der Schaar

191

Action Inference by Maximising Evidence: Zero-Shot Imitation from Observation with World Models

Xingyuan Zhang, Philip Becker-Ehmck, Patrick van der Smagt, Maximilian Karl

192

Multiplication-Free Transformer Training via Piecewise Affine Operations

Atli Kosson, Martin Jaggi

193

Patch n’ Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution

Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde Caron, Andreas Peter Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim Alabdulmohsin, Avital Oliver, Piotr Padlewski, Alexey A. Gritsenko, Mario Lucic, Neil Houlsby

194

Efficient Exploration in Continuous-time Model-based Reinforcement Learning

Lenart Treven, Jonas Hübotter, Bhavya Sukhija, Florian Dorfler, Andreas Krause

195

RDumb: A simple approach that questions our progress in continual test-time adaptation

Ori Press, Steffen Schneider, Matthias Kuemmerer, Matthias Bethge

196

Score-based Data Assimilation

François Rozet, Gilles Louppe

197

Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, Tom Goldstein

198

Regret Minimization via Saddle Point Optimization

Johannes Kirschner, Alireza Bakhtiari, Kushagra Chandak, Volodymyr Tkachuk, Csaba Szepesvari

199

Nonparametric Identifiability of Causal Representations from Unknown Interventions

Julius von Kügelgen, Michel Besserve, Wendong Liang, Luigi Gresele, Armin Kekić, Elias Bareinboim, David Blei, Bernhard Schölkopf

200

Textually Pretrained Speech Language Models

Michael Hassid, Tal Remez, Tu Anh Nguyen, Itai Gat, Alexis Conneau, Felix Kreuk, Jade Copet, Alexandre Défossez, Gabriel Synnaeve, Emmanuel Dupoux, Roy Schwartz, Yossi Adi

201

Learning to Tokenize for Generative Retrieval

Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang Wang, Haichao Zhu, Pengjie Ren, Zhumin Chen, Dawei Yin, Maarten de Rijke, Zhaochun Ren

202

Fast Attention Over Long Sequences With Dynamic Sparse Flash Attention

Matteo Pagliardini, Daniele Paliotta, Martin Jaggi, François Fleuret

203

Attacks on Online Learners: a Teacher-Student Analysis

Riccardo Giuseppe Margiotta, Sebastian Goldt, Guido Sanguinetti

204

Learning Rate Free Bayesian Inference in Constrained Domains

Louis Sharrock, Lester Mackey, Christopher Nemeth

205

REx: Data-Free Residual Quantization Error Expansion

Edouard YVINEC, Arnaud Dapogny, Matthieu Cord, Kevin Bailly

206

Connecting Certified and Adversarial Training

Yuhao Mao, Mark Niklas Mueller, Marc Fischer, Martin Vechev

207

Persuading Farsighted Receivers in MDPs: the Power of Honesty

Martino Bernasconi, Matteo CastiglioniAlberto Marchesi, Mirco Mutti

208

An Optimal Structured Zeroth-order Algorithm for Non-smooth Optimization

Marco Rando, Cesare Molinari, Lorenzo RosascoSilvia Villa

209

DiT-3D: Exploring Plain Diffusion Transformers for 3D Shape Generation

Shentong Mo, Enze Xie, Ruihang Chu, Lanqing HONG, Matthias Nießner, Zhenguo Li

210

Learning Robust Statistics for Simulation-based Inference under Model Misspecification

Daolang Huang, Ayush Bharti, Amauri H Souza, Luigi AcerbiSamuel Kaski

211

Cognitive Model Discovery via Disentangled RNNs

Kevin J Miller, Maria K Eckstein, Matthew Botvinick, Zeb Kurth-Nelson

212

Variational Annealing on Graphs for Combinatorial Optimization

Sebastian Sanokowski, Wilhelm Franz Berghammer, Sepp Hochreiter, Sebastian Lehner

213

Contextual Stochastic Bilevel Optimization

Yifan Hu, Jie Wang, Yao Xie, Andreas Krause, Daniel Kuhn

214

Collaborative Learning via Prediction Consensus

Dongyang Fan, Celestine Mendler-DünnerMartin Jaggi

215

Transportability for Bandits with Data from Different Environments

Alexis Bellot, Alan Malek, Silvia Chiappa

216

Dense-Exponential Random Features: Sharp Positive Estimators of the Gaussian Kernel

Valerii Likhosherstov, Krzysztof Marcin Choromanski, Kumar Avinava Dubey, Frederick Liu, Tamas Sarlos, Adrian Weller

217

On Imitation in Mean-field Games

Giorgia Ramponi, Pavel Kolev, Olivier Pietquin, Niao He, Mathieu Lauriere, Matthieu Geist

218

Segment Anything in High Quality

Lei Ke, Mingqiao Ye, Martin Danelljan, Yifan liu, Yu-Wing Tai, Chi-Keung Tang, Fisher Yu

219

Scaling MLPs: A Tale of Inductive Bias

Gregor Bachmann, Sotiris Anagnostidis, Thomas Hofmann

220

Advice Querying under Budget Constraint for Online Algorithms

Ziyad Benomar, Vianney Perchet

221

Goal-conditioned Offline Planning from Curious Exploration

Marco Bagatella, Georg Martius

222

CADet: Fully Self-Supervised Out-Of-Distribution Detection With Contrastive Learning

Charles Guille-Escuret, Pau Rodriguez, David Vazquez, Ioannis Mitliagkas, Joao Monteiro

223

Lossy Image Compression with Conditional Diffusion Models

Ruihan Yang, Stephan Mandt

224

Does Visual Pretraining Help End-to-End Reasoning?

Chen Sun, Calvin Luo, Xingyi Zhou, Anurag Arnab, Cordelia Schmid

225

The Shaped Transformer: Attention Models in the Infinite Depth-and-Width Limit

Lorenzo Noci, Chuning Li, Mufan Bill Li, Bobby He, Thomas HofmannChris J. Maddison, Daniel M. Roy

226

Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach

Riccardo Poiani, Nicole Nobili, Alberto Maria MetelliMarcello Restelli

227

Revisiting Adversarial Training for ImageNet: Architectures, Training and Generalization across Threat Models

Naman Deep Singh, Francesco Croce, Matthias Hein

228

Interpretable and Explainable Logical Policies via Neurally Guided Symbolic Abstraction

Quentin Delfosse, Hikaru Shindo, Devendra Singh Dhami, Kristian Kersting

229

Eliciting User Preferences for Personalized Multi-Objective Decision Making through Comparative Feedback

Han Shao, Lee Cohen, Avrim Blum, Yishay Mansour, Aadirupa Saha, Matthew Walter

230

Universality laws for Gaussian mixtures in generalized linear models

Yatin Dandi, Ludovic Stephan, Florent KrzakalaBruno Loureiro, Lenka Zdeborova

231

ATMAN: Understanding Transformer Predictions Through Memory Efficient Attention Manipulation

Björn Deiseroth, Mayukh Deb, Samuel Weinbach, Manuel Brack, Patrick Schramowski, Kristian Kersting

232

Weakly Supervised 3D Open-vocabulary Segmentation

Kunhao Liu, Fangneng Zhan, Jiahui Zhang, MUYU XU, Yingchen Yu, Abdulmotaleb El Saddik, Christian Theobalt, Eric Xing, Shijian Lu

233

Modulated Neural ODEs

Ilze Amanda Auzina, Cagatay Yildiz, Sara MagliacaneMatthias BethgeEfstratios Gavves

234

On the Complexity of Differentially Private Best-Arm Identification with Fixed Confidence

Achraf Azize, Marc Jourdan, Aymen Al Marjani, Debabrota Basu

235

Human spatiotemporal pattern learning as probabilistic program synthesis

Tracey Mills, Joshua B. Tenenbaum, Samuel J Cheyette

236

Geometric Neural Diffusion Processes

Emile Mathieu, Vincent Dutordoir, Michael John Hutchinson, Valentin De Bortoli, Yee Whye Teh, Richard E Turner

237

Moment Matching Denoising Gibbs Sampling

Mingtian Zhang, Alex Hawkins-Hooker, Brooks Paige, David Barber

238

First- and Second-Order Bounds for Adversarial Linear Contextual Bandits

Julia Olkhovskaya, Jack Mayo, Tim van ErvenGergely Neu, Chen-Yu Wei

239

To Stay or Not to Stay in the Pre-train Basin: Insights on Ensembling in Transfer Learning

Ildus Sadrtdinov, Dmitrii Pozdeev, Dmitry P. Vetrov, Ekaterina Lobacheva

240

Policy Gradient for Rectangular Robust Markov Decision Processes

Navdeep Kumar, Esther Derman, Matthieu Geist, Kfir Yehuda Levy, Shie Mannor

241

Monte Carlo Tree Search with Boltzmann Exploration

Michael Painter, Mohamed Baioumy, Nick Hawes, Bruno Lacerda

242

Online Learning under Adversarial Nonlinear Constraints

Pavel Kolev, Georg MartiusMichael Muehlebach

243

Understanding and Improving Ensemble Adversarial Defense

Yian Deng, Tingting Mu

244

Active Learning-Based Species Range Estimation

Christian Lange, Elijah Cole, Grant Van Horn, Oisin Mac Aodha

245

Tanimoto Random Features for Scalable Molecular Machine Learning

Austin Tripp, Sergio Bacallado, Sukriti Singh, José Miguel Hernández-Lobato

246

Should Under-parameterized Student Networks Copy or Average Teacher Weights?

Berfin Simsek, Amire Bendjeddou, Wulfram Gerstner, Johanni Brea

247

Geometric Algebra Transformer

Johann Brehmer, Pim De Haan, Sönke Behrends, Taco Cohen

248

Transformers learn to implement preconditioned gradient descent for in-context learning

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, Suvrit Sra

249

Diffused Redundancy in Pre-trained Representations

Vedant Nanda, Till Speicher, John P Dickerson, Krishna P. Gummadi, Soheil Feizi, Adrian Weller

250

Compositional Generalization from First Principles

Thaddäus Wiedemer, Prasanna Mayilvahanan, Matthias BethgeWieland Brendel

251

Flow Factorized Representation Learning

Yue Song, T. Anderson Keller, Nicu SebeMax Welling

252

Individualized Dosing Dynamics via Neural Eigen Decomposition

Stav Belogolovsky, Ido Greenberg, Danny Eytan, Shie Mannor

253

What functions can Graph Neural Networks compute on random graphs? The role of Positional Encoding

Nicolas Keriven, Samuel Vaiter

254

Deep Stochastic Processes via Functional Markov Transition Operators

Jin Xu, Emilien Dupont, Kaspar Märtens, Tom Rainforth, Yee Whye Teh

255

Stochastic Optimal Control for Collective Variable Free Sampling of Molecular Transition Paths

Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Bernd Ensing, Max Welling

256

Disentanglement via Latent Quantization

Kyle Hsu, Will Dorrell, James C. R. Whittington, Jiajun Wu, Chelsea Finn

257

SNAP: Self-Supervised Neural Maps for Visual Positioning and Semantic Understanding

Paul-Edouard Sarlin, Eduard Trulls, Marc Pollefeys, Jan Hosang, Simon Lynen

258

Trial matching: capturing variability with data-constrained spiking neural networks

Christos Sourmpis, Carl C. H. Petersen, Wulfram Gerstner, Guillaume Bellec

259

Latent Field Discovery in Interacting Dynamical Systems with Neural Fields

Miltiadis Kofinas, Erik J Bekkers, Naveen Shankar Nagaraja, Efstratios Gavves

260

Transferable Adversarial Robustness for Categorical Data via Universal Robust Embeddings

Klim Kireev, Maksym Andriushchenko, Carmela TroncosoNicolas Flammarion

261

Prediction and Control in Continual Reinforcement Learning

Nishanth Anand, Doina Precup

262

Faster Relative Entropy Coding with Greedy Rejection Coding

Gergely Flamich, Stratis Markou, José Miguel Hernández-Lobato

263

Trading-off price for data quality to achieve fair online allocation

Mathieu Molina, Nicolas Gast, Patrick Loiseau, Vianney Perchet

264

Conformal Prediction for Time Series with Modern Hopfield Networks

Andreas Auer, Martin Gauch, Daniel Klotz, Sepp Hochreiter

265

Aligning Optimization Trajectories with Diffusion Models for Constrained Design Generation

Giorgio Giannone, Akash Srivastava, Ole Winther, Faez Ahmed

266

First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities

Aleksandr Beznosikov, Sergey Samsonov, Marina Sheshukova, Alexander Gasnikov, Alexey Naumov, Eric Moulines

267

SEGA: Instructing Text-to-Image Models using Semantic Guidance

Manuel Brack, Felix Friedrich, Dominik Hintersdorf, Lukas Struppek, Patrick Schramowski, Kristian Kersting

268

LIMA: Less Is More for Alignment

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, Omer Levy

269

DropCompute: simple and more robust distributed synchronous training via compute variance reduction

Niv Giladi, Shahar Gottlieb, Moran Shkolnik, Asaf Karnieli, Ron Banner, Elad Hoffer, Kfir Yehuda Levy, Daniel Soudry

270

Controlling Text-to-Image Diffusion by Orthogonal Finetuning

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan ZhangAdrian WellerBernhard Schölkopf

271

Train Hard, Fight Easy: Robust Meta Reinforcement Learning

Ido Greenberg, Shie MannorGal Chechik, Eli Meirom

272

Penalising the biases in norm regularisation enforces sparsity

Etienne Boursier, Nicolas Flammarion

273

Neural Functional Transformers

Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Winnie Xu, Samuel Sokota, J Zico Kolter, Chelsea Finn

274

Vocabulary-free Image Classification

Alessandro Conti, Enrico Fini, Massimiliano ManciniPaolo RotaYiming WangElisa Ricci

275

Simple, Scalable and Effective Clustering via One-Dimensional Projections

Moses Charikar, Monika Henzinger, Lunjia Hu, Maximilian Vötsch, Erik Waingarten

276

Make Pre-trained Model Reversible: From Parameter to Memory Efficient Fine-Tuning

Baohao Liao, Shaomu Tan, Christof Monz

277

Unlocking Feature Visualization for Deep Network with MAgnitude Constrained Optimization

Thomas FEL, Thibaut Boissin, Victor Boutin, Agustin Martin Picard, Paul Novello, Julien Colin, Drew Linsley, Tom ROUSSEAU, Remi Cadene, Lore Goetschalckx, Laurent Gardes, Thomas Serre

278

Assumption violations in causal discovery and the robustness of score matching

Francesco Montagna, Atalanti A. Mastakouri, Elias Eulig, Nicoletta Noceti, Lorenzo RosascoDominik Janzing, Bryon Aragam, Francesco Locatello

279

Model-free Posterior Sampling via Learning Rate Randomization

Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Remi Munos, Alexey Naumov, pierre perrault, Michal Valko, Pierre MENARD

280

Why Did This Model Forecast This Future? Information-Theoretic Saliency for Counterfactual Explanations of Probabilistic Regression Models

Chirag Raman, Alec Nonnemaker, Amelia Villegas-Morcillo, Hayley Hung, Marco Loog

281

Intriguing Properties of Quantization at Scale

Arash Ahmadian, Saurabh Dash, Hongyu Chen, Bharat Venkitesh, Zhen Stephen Gou, Phil Blunsom, Ahmet Ãœstün, Sara Hooker

282

Optimization or Architecture: How to Hack Kalman Filtering

Ido Greenberg, Netanel Yannay, Shie Mannor

283

Towards Characterizing the First-order Query Complexity of Learning (Approximate) Nash Equilibria in Zero-sum Matrix Games

Hedi Hadiji, Sarah Sachs, Tim van Erven, Wouter M Koolen

284

Initialization Matters: Privacy-Utility Analysis of Overparameterized Neural Networks

Jiayuan Ye, Zhenyu Zhu, Fanghui Liu, Reza Shokri, Volkan Cevher

285

SHAP-IQ: Unified Approximation of any-order Shapley Interactions

Fabian Fumagalli, Maximilian Muschalik, Patrick Kolpaczki, Eyke Hüllermeier, Barbara Eva Hammer

286

Understanding and Mitigating Copying in Diffusion Models

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, Tom Goldstein

287

Causal Component Analysis

Wendong Liang, Armin Kekić, Julius von Kügelgen, Simon Buchholz, Michel Besserve, Luigi Gresele, Bernhard Schölkopf

288

Construction of Hierarchical Neural Architecture Search Spaces based on Context-free Grammars

Simon Schrodi, Danny Stoll, Binxin Ru, Rhea Sanjay Sukthanker, Thomas BroxFrank Hutter

289

Guiding The Last Layer in Federated Learning with Pre-Trained Models

Gwen Legate, Nicolas Bernier, Lucas Caccia, Edouard Oyallon, Eugene Belilovsky

290

Embedding Space Interpolation Beyond Mini-Batch, Beyond Pairs and Beyond Examples

Shashanka Venkataramanan, Ewa Kijak, Laurent Amsaleg, Yannis Avrithis

291

Robust covariance estimation with missing values and cell-wise contamination

Gregoire Pacreau, Karim Lounici

292

Multitask Learning with No Regret: from Improved Confidence Bounds to Active Learning

Pier Giuseppe Sessa, Pierre Laforgue, Nicolò Cesa-BianchiAndreas Krause

293

Neural Latent Geometry Search: Product Manifold Inference via Gromov-Hausdorff-Informed Bayesian Optimization

Haitz Sáez de Ocáriz Borde, Alvaro Arroyo, Ismael Morales López, Ingmar Posner, Xiaowen Dong

294

Human-Aligned Calibration for AI-Assisted Decision Making

Nina L. Corvelo Benz, Manuel Gomez Rodriguez

295

Cal-QL: Calibrated Offline RL Pre-Training for Efficient Online Fine-Tuning

Mitsuhiko Nakamoto, Yuexiang Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral Kumar, Sergey Levine

296

Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and New Directions

Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner, Stephan Günnemann

297

Estimating Koopman operators with sketching to provably learn large scale dynamical systems

Giacomo Meanti, Antoine Chatalic, Vladimir R Kostic, Pietro Novelli, massimiliano pontil, Lorenzo Rosasco

298

Two-Stage Learning to Defer with Multiple Experts

Anqi Mao, Christopher Mohri, Mehryar Mohri, Yutao Zhong

299

High dimensional, tabular deep learning with an auxiliary knowledge graph

Camilo Ruiz, Hongyu Ren, Kexin Huang, Jure Leskovec

300

CSLP-AE: A Contrastive Split-Latent Permutation Autoencoder Framework for Zero-Shot Electroencephalography Signal Conversion

Anders Vestergaard Nørskov, Alexander Neergaard Zahid, Morten Mørup

301

Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, Omer Levy

302

Differentiable Blocks World: Qualitative 3D Decomposition by Rendering Primitives

Tom Monnier, Jake Austin, Angjoo Kanazawa, Alexei A Efros, Mathieu Aubry

303

3D-IntPhys: Towards More Generalized 3D-grounded Visual Intuitive Physics under Challenging Scenes

Haotian Xue, Antonio TorralbaJoshua B. Tenenbaum, Daniel LK Yamins, Yunzhu Li, Hsiao-Yu Tung

304

FedL2P: Federated Learning to Personalize

Royson Lee, Minyoung Kim, Da Li, Xinchi Qiu, Timothy Hospedales, Ferenc Huszár, Nicholas Donald Lane

305

Pseudo-Likelihood Inference

Theo Gruner, Boris Belousov, Fabio Muratore, Daniel Palenicek, Jan Peters

306

On the spectral bias of two-layer linear networks

Aditya Vardhan Varre, Maria-Luiza Vladarean, Loucas Pillaud-Vivien, Nicolas Flammarion

307

Invariant Anomaly Detection under Distribution Shifts: A Causal Perspective

João B. S. Carvalho, Mengtao Zhang, Robin Geyer, Carlos Cotrini, Joachim M. Buhmann

308

RRHF: Rank Responses to Align Language Models with Human Feedback

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, Fei Huang

309

Context-lumpable stochastic bandits

Chung-Wei Lee, Qinghua Liu, Yasin Abbasi-Yadkori, Chi Jin, Tor Lattimore, Csaba Szepesvari

310

Reward Imputation with Sketching for Contextual Batched Bandits

Xiao Zhang, Ninglu Shao, Zihua Si, Jun Xu, Wenhan Wang, Hanjing Su, Ji-Rong Wen

311

Curvature Filtrations for Graph Generative Model Evaluation

Joshua Southern, Jeremy Wayland, Michael M. Bronstein, Bastian Rieck

312

Statistically Valid Variable Importance Assessment through Conditional Permutations

Ahmad Chamma, Denis Engemann, Bertrand Thirion

313

RoboCLIP: One Demonstration is Enough to Learn Robot Policies

Sumedh Anand Sontakke, Jesse Zhang, Séb Arnold, Karl Pertsch, Erdem Biyik, Dorsa Sadigh, Chelsea Finn, Laurent Itti

314

Optimal Convergence Rate for Exact Policy Mirror Descent in Discounted Markov Decision Processes

Emmeran Johnson, Ciara Pike-Burke, Patrick Rebeschini

315

Flow Matching for Scalable Simulation-Based Inference

Jonas Bernhard Wildberger, Maximilian Dax, Simon Buchholz, Stephen R Green, Jakob H. Macke, Bernhard Schölkopf

316

Online POMDP Planning with Anytime Deterministic Guarantees

Moran Barenboim, Vadim Indelman

317

Convolution Monge Mapping Normalization for learning on sleep data

Theo Gnassounou, Rémi Flamary, Alexandre Gramfort

318

When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Segmentation

Xinhong Ma, Yiming Wang, Hao Liu, Tianyu Guo, Yunhe Wang

319

Smooth, exact rotational symmetrization for deep learning on point clouds

Sergey Pozdnyakov, Michele Ceriotti

320

Spuriosity Didn't Kill the Classifier: Using Invariant Predictions to Harness Spurious Features

Cian Eastwood, Shashank Singh, Andrei Liviu Nicolicioiu, Marin Vlastelica, Julius von Kügelgen, Bernhard Schölkopf

321

Koopman Kernel Regression

Petar Bevanda, Max Beier, Armin Lederer, Stefan Georg Sosnowski, Eyke Hüllermeier, Sandra Hirche

322

Regularity as Intrinsic Reward for Free Play

Cansu Sancaktar, Justus PiaterGeorg Martius

323

ProteinNPT: Improving protein property prediction and design with non-parametric transformers

Pascal Notin, Ruben Weitzman, Debora Susan Marks, Yarin Gal

324

FeCAM: Exploiting the Heterogeneity of Class Distributions in Exemplar-Free Continual Learning

Dipam Goswami, Yuyang Liu, BartÅ‚omiej Twardowski, Joost van de Weijer

325

Towards Anytime Classification in Early-Exit Architectures by Enforcing Conditional Monotonicity

Metod Jazbec, James Urquhart Allingham, Dan ZhangEric Nalisnick

326

Strategic Data Sharing between Competitors

Nikita Tsoy, Nikola Konstantinov

327

MultiFusion: Fusing Pre-Trained Models for Multi-Lingual, Multi-Modal Image Generation

Marco Bellagente, Manuel Brack, Hannah Benita Teufel, Felix Friedrich, Björn Deiseroth, Constantin Eichenberg, Andrew Dai, Robert John Nicholas Baldock, Souradeep Nanda, Koen Oostermeijer, Andres Felipe Cruz-Salinas, Patrick Schramowski, Kristian Kersting, Samuel Weinbach

328

Rewrite Caption Semantics: Bridging Semantic Gaps for Language-Supervised Semantic Segmentation

Yun Xing, Jian Kang, Aoran Xiao, Jiahao Nie, Ling Shao, Shijian Lu

329

Large Language Models for Automated Data Science: Introducing CAAFE for Context-Aware Automated Feature Engineering

Noah Hollmann, Samuel Müller, Frank Hutter

330

Intervention Generalization: A View from Factor Graph Models

Gecia Bravo-Hermsdorff, David Watson, Jialin Yu, Jakob Zeitler, Ricardo Silva

331

Test-time Training for Matching-based Video Object Segmentation

Juliette Bertrand, Giorgos Kordopatis-Zilos, Yannis Kalantidis, Giorgos Tolias

332

Accelerating Motion Planning via Optimal Transport

An Thai Le, Georgia Chalvatzaki, Armin Biess, Jan Peters

333

OpenMask3D: Open-Vocabulary 3D Instance Segmentation

Ayça Takmaz, Elisabetta Fedele, Robert Sumner, Marc PollefeysFederico TombariFrancis Engelmann

334

Provably Efficient Offline Reinforcement Learning in Regular Decision Processes

Roberto Cipollone, Anders Jonsson, Alessandro Ronca, Mohammad Sadegh Talebi

335

On the Convergence of Encoder-only Shallow Transformers

Yongtao Wu, Fanghui LiuGrigorios ChrysosVolkan Cevher

336

MeGraph: Capturing Long-Range Interactions by Alternating Local and Hierarchical Aggregation on Multi-Scaled Graph Hierarchy

Honghua Dong, Jiawei Xu, Yu Yang, Rui Zhao, Shiwen Wu, Chun Yuan, Xiu Li, Chris J. Maddison, Lei Han

337

Structure from Duplicates: Neural Inverse Graphics from a Pile of Objects

Tianhang Cheng, Wei-Chiu Ma, Kaiyu Guan, Antonio Torralba, Shenlong Wang

338

Information Maximizing Curriculum: A Curriculum-Based Approach for Learning Versatile Skills

Denis Blessing, Onur Celik, Xiaogang Jia, Moritz Reuss, Maximilian Xiling Li, Rudolf Lioutikov, Gerhard Neumann

339

Random-Access Infinite Context Length for Transformers

Amirkeivan Mohtashami, Martin Jaggi

340

Certification of Distributional Individual Fairness

Matthew Robert Wicker, Vihari Piratla, Adrian Weller

341

Joint processing of linguistic properties in brains and language models

SUBBA REDDY OOTA, Manish Gupta, Mariya Toneva

342

A State Representation for Diminishing Rewards

Ted Moskovitz, Samo Hromadka, Ahmed Touati, Diana L Borsa, Maneesh Sahani

343

Bounding training data reconstruction in DP-SGD

Jamie Hayes, Borja Balle, Saeed Mahloujifar

344

AVIS: Autonomous Visual Information Seeking with Large Language Model Agent

Ziniu Hu, Ahmet Iscen, Chen Sun, Kai-Wei Chang, Yizhou Sun, David A Ross, Cordelia Schmid, Alireza Fathi

345

Language Model Tokenizers Introduce Unfairness Between Languages

Aleksandar Petrov, Emanuele La Malfa, Philip Torr, Adel Bibi

346

Synthetic Experience Replay

Cong Lu, Philip J. Ball, Yee Whye Teh, Jack Parker-Holder

347

Hierarchical Randomized Smoothing

Yan Scholten, Jan Schuchardt, Aleksandar BojchevskiStephan Günnemann

348

DDF-HO: Hand-Held Object Reconstruction via Conditional Directed Distance Field

Chenyangguang Zhang, Yan Di, Ruida Zhang, Guangyao Zhai, Fabian Manhardt, Federico Tombari, Xiangyang Ji

349

No Representation Rules Them All in Category Discovery

Sagar Vaze, Andrea VedaldiAndrew Zisserman

350

Quantification of Uncertainty with Adversarial Models

Kajetan Schweighofer, Lukas Aichberger, Mykyta Ielanskyi, Günter KlambauerSepp Hochreiter

351

Evaluating the Robustness of Interpretability Methods through Explanation Invariance and Equivariance

Jonathan Crabbé, Mihaela van der Schaar

352

Dynamic Prompt Learning: Addressing Cross-Attention Leakage for Text-Based Image Editing

Kai Wang, Fei Yang, Shiqi Yang, Muhammad Atif Butt, Joost van de Weijer

353

Bayesian Metric Learning for Uncertainty Quantification in Image Retrieval

Frederik Warburg, Marco Miani, Silas Brack, Søren Hauberg

354

Likelihood Ratio Confidence Sets for Sequential Decision Making

Nicolas Emmenegger, Mojmir Mutny, Andreas Krause

355

Learning Sample Difficulty from Pre-trained Models for Reliable Prediction

Peng Cui, Dan Zhang, Zhijie Deng, Yinpeng Dong, Jun Zhu

356

Adaptive Selective Sampling for Online Prediction with Experts

Rui M. Castro, Fredrik Hellström, Tim van Erven

357

Binary Classification with Confidence Difference

Wei Wang, Lei Feng, Yuchen Jiang, Gang Niu, Min-Ling Zhang, Masashi Sugiyama

358

High Precision Causal Model Evaluation with Conditional Randomization

Chao Ma, Cheng Zhang

359

On the Exploitability of Instruction Tuning

Manli Shu, Jiongxiao Wang, Chen Zhu, Jonas Geiping, Chaowei Xiao, Tom Goldstein

360

Unsupervised Protein-Ligand Binding Energy Prediction via Neural Euler's Rotation Equation

Wengong Jin, Siranush Sarkizova, Xun Chen, Nir Hacohen, Caroline Uhler

361

A Unified Framework for U-Net Design and Analysis

Christopher Williams, Fabian Falck, George Deligiannidis, Christopher C. Holmes, Arnaud Doucet, Saifuddin Syed

362

Learning Large Graph Property Prediction via Graph Segment Training

Kaidi Cao, Phitchaya Mangpo Phothilimthana, Sami Abu-El-Haija, Dustin Zelle, Yanqi Zhou, Charith Mendis, Jure Leskovec, Bryan Perozzi

363

Learning via Wasserstein-Based High Probability Generalisation Bounds

Paul Viallard, Maxime Haddouche, Umut Simsekli, Benjamin Guedj

364

Explore to Generalize in Zero-Shot RL

Ev Zisselman, Itai Lavie, Daniel Soudry, Aviv Tamar

365

What is the Inductive Bias of Flatness Regularization? A Study of Deep Matrix Factorization Models

Khashayar Gatmiry, Zhiyuan Li, Tengyu Ma, Sashank J. Reddi, Stefanie Jegelka, Ching-Yao Chuang

366

Probabilistic Exponential Integrators

Nathanael Bosch, Philipp Hennig, Filip Tronarp

367

Group Robust Classification Without Any Group Information

Christos Tsirigotis, Joao Monteiro, Pau Rodriguez, David Vazquez, Aaron Courville

368

ISP: Multi-Layered Garment Draping with Implicit Sewing Patterns

Ren Li, Benot Guillard, Pascal Fua

369

Sharpness-Aware Minimization Leads to Low-Rank Features

Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, Nicolas Flammarion

370

Beyond Normal: On the Evaluation of Mutual Information Estimators

Paweł CzyżFrederic Grabowski, Julia E Vogt, Niko Beerenwinkel, Alexander Marx

371

Topological Obstructions and How to Avoid Them

Babak Esmaeili, Robin Walters, Heiko Zimmermann, Jan-Willem van de Meent

372

Implicit Transfer Operator Learning: Multiple Time-Resolution Models for Molecular Dynamics

Mathias Schreiner, Ole Winther, Simon Olsson

373

Learning Unseen Modality Interaction

Yunhua Zhang, Hazel Doughty, Cees G. M. Snoek

374

Robust Knowledge Transfer in Tiered Reinforcement Learning

Jiawei Huang, Niao He

375

CommonScenes: Generating Commonsense 3D Indoor Scenes with Scene Graphs

Guangyao Zhai, Evin Pinar Örnek, Shun-Cheng Wu, Yan Di, Federico Tombari, Nassir Navab, Benjamin Busam

376

Adapting Neural Link Predictors for Data-Efficient Complex Query Answering

Erik Arakelyan, Pasquale Minervini, Daniel Daza, Michael CochezIsabelle Augenstein

377

Practical differentially private hyperparameter tuning with subsampling

Antti Koskela, Tejas Kulkarni

378

Improving the privacy and practicality of objective pertubation for differentially private linear learners

Rachel Redberg, Antti Koskela, Yu-Xiang Wang

379

Jaccard Metric Losses: Optimizing the Jaccard Index with Soft Labels.

Wang, Z., X. Ning, M. B. Blaschko

380

Revisiting Evaluation Metrics for Semantic Segmentation: Optimization and Evaluation of Fine-grained Intersection over Union.

Wang, Z., M. Berman, A. Rannen-Triki, P. Torr, D. Tuia, T. Tuytelaars, L. Van Gool, J. Yu, M. B. Blaschko

381

Learning to Learn Prototypical Networks by Task-Guided Diffusion

Yingjun Du, Zehao Xiao, Shencai Liao, Cees Snoek

382

Conditional Mutual Information for Disentangled Representations in Reinfordement Learning

Mhairi Dunion, Trevor McInroe, Kevin Sebastian Luck, Josiah P. Hanna, Stefano V. Albrecht



NeurIPS 2023 spotlight

#

Paper Title

List of authors (ELLIS members in bold)

1

Optimistic Natural Policy Gradient: a Simple Efficient Policy Optimization Framework for Online RL

Qinghua Liu, Gellért Weisz, András György, Chi Jin, Csaba Szepesvari

2

Unpaired Multi-Domain Causal Representation Learning

Nils Sturma, Chandler Squires, Mathias DrtonCaroline Uhler

3

Quasi-Monte Carlo Graph Random Features

Isaac Reid, Adrian Weller, Krzysztof Marcin Choromanski

4

Uncertainty Quantification over Graph with Conformalized Graph Neural Networks

Kexin Huang, Ying Jin, Emmanuel Candes, Jure Leskovec

5

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency

Owen Queen, Thomas Hartvigsen, Teddy Koker, Huan He, Theodoros Tsiligkaridis, Marinka Zitnik

6

The Geometry of Neural Nets' Parameter Spaces Under Reparametrization

Agustinus Kristiadi, Felix Dangel, Philipp Hennig

7

Deep Neural Collapse Is Provably Optimal for the Deep Unconstrained Features Model

Peter Súkeník, Marco Mondelli, Christoph H Lampert

8

Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, Thomas Hofmann

9

Can semi-supervised learning use all the data effectively? A lower bound perspective

Alexandru Tifrea, Gizem Yüce, Amartya SanyalFanny Yang

10

Safety Verification of Decision-Tree Policies in Continuous Time

Christian Schilling, Anna Lukina, Emir Demirović, Kim Guldstrand Larsen

11

Trans-Dimensional Generative Modeling via Jump Diffusion Models

Andrew Campbell, William Harvey, Christian Dietrich Weilbach, Valentin De Bortoli, Tom Rainforth, Arnaud Doucet

12

Break It Down: Evidence for Structural Compositionality in Neural Networks

Michael A. Lepori, Thomas Serre, Ellie Pavlick

13

DreamHuman: Animatable 3D Avatars from Text

Nikos Kolotouros, Thiemo Alldieck, Andrei Zanfir, Eduard Gabriel Bazavan, Mihai Fieraru, Cristian Sminchisescu

14

Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the Quantum Many-Body Schrödinger Equation

Kirill Neklyudov, Jannes Nys, Luca Thiede, Juan Felipe Carrasquilla Alvarez, qiang liu, Max Welling, Alireza Makhzani

15

PRODIGY: Enabling In-context Learning Over Graphs

Qian Huang, Hongyu Ren, Peng Chen, Gregor KrŽmanc, Daniel Zeng, Percy Liang, Jure Leskovec

16

Explore In-Context Learning for 3D Point Cloud Understanding

Zhongbin Fang, Xiangtai Li, Xia Li, Joachim M. Buhmann, Chen Change Loy, Mengyuan Liu

17

Fast Optimal Transport through Sliced Generalized Wasserstein Geodesics

Guillaume Mahey, Laetitia Chapel, Gilles Gasso, Clément Bonet, Nicolas Courty

18

Coherent Soft Imitation Learning

Joe Watson, Sandy Huang, Nicolas Heess

19

Deep Reinforcement Learning with Plasticity Injection

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney, Andre Barreto

20

Saddle-to-Saddle Dynamics in Diagonal Linear Networks

Scott Pesme, Nicolas Flammarion

21

GloptiNets: Scalable Non-Convex Optimization with Certificates

Gaspard Beugnot, Julien MairalAlessandro Rudi

22

Optimal Guarantees for Algorithmic Reproducibility and Gradient Complexity in Convex Optimization

Liang Zhang, Junchi YANG, Amin Karbasi, Niao He

23

Diffusion with Forward Models: Solving Stochastic Inverse Problems Without Direct Supervision

Ayush Tewari, Tianwei Yin, George Cazenavette, Semon Rezchikov, Joshua B. Tenenbaum, Fredo Durand, William T. Freeman, Vincent Sitzmann

24

Theoretical and Practical Perspectives on what Influence Functions Do

Andrea Schioppa, Katja Filippova, Ivan Titov, Polina Zablotskaia

25

Multi Time Scale World Models

Vaisakh Shaj, Saleh GHOLAM ZADEH, Ozan Demir, Luiz Ricardo Douat, Gerhard Neumann

26

Inferring the Future by Imagining the Past

Kartik Chandra, Tony Chen, Tzu-Mao Li, Jonathan Ragan-Kelley, Joshua B. Tenenbaum

27

What Planning Problems Can A Relational Neural Network Solve?

Jiayuan Mao, Tomás Lozano-Pérez, Joshua B. Tenenbaum, Leslie Pack Kaelbling

28

Supervised Pretraining Can Learn In-Context Reinforcement Learning

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, Emma Brunskill

29

Semi-Supervised Domain Generalization with Known and Unknown Classes

Lei Zhang, Ji-Fu Li, Wei Wang

30

Tight Risk Bounds for Gradient Descent on Separable Data

Matan Schliserman, Tomer Koren

31

Learning Universal Policies via Text-Guided Video Generation

Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Joshua B. Tenenbaum, Dale Schuurmans, Pieter Abbeel

32

Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast Contrastive Fusion

Yash Sanjay Bhalgat, Iro Laina, Joao F. Henriques, Andrea VedaldiAndrew Zisserman

33

Learning Layer-wise Equivariances Automatically using Gradients

Tycho F.A. van der Ouderaa, Alexander Immer, Mark van der Wilk

34

Stable Nonconvex-Nonconcave Training via Linear Interpolation

Thomas Pethick, Wanyun Xie, Volkan Cevher

35

A Dynamical System View of Langevin-Based Non-Convex Sampling

Mohammad Reza Karimi Jaghargh, Ya-Ping Hsieh, Andreas Krause

36

On the Minimax Regret for Online Learning with Feedback Graphs

Khaled Eldowa, Emmanuel Esposito, Tommaso CesariNicolò Cesa-Bianchi

37

Full-Atom Protein Pocket Design via Iterative Refinement

ZAIXI ZHANG, Zepu Lu, Zhongkai Hao, Marinka Zitnik, Qi Liu

38

Expressive Sign Equivariant Networks for Spectral Geometric Learning

Derek Lim, Joshua Robinson, Stefanie JegelkaHaggai Maron

39

4M: Massively Multimodal Masked Modeling

David Mizrahi, Roman Bachmann, Oguzhan Fatih Kar, Teresa Yeo, Mingfei Gao, Afshin Dehghan, Amir Zamir

40

Implicit Variational Inference for High-Dimensional Posteriors

Anshuk Uppal, Kristoffer Stensbo-Smidt, Wouter BoomsmaJes Frellsen

41

ARTree: A Deep Autoregressive Model for Phylogenetic Inference

Tianyu Xie, Cheng Zhang

42

PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers

Phillip Lippe, Bastiaan S. Veeling, Paris Perdikaris, Richard E Turner, Johannes Brandstetter

43

ProPILE: Probing Privacy Leakage in Large Language Models

Siwon Kim, Sangdoo Yun, Hwaran Lee, Martin Gubri, Sungroh Yoon, Seong Joon Oh

44

Scale Alone Does not Improve Mechanistic Interpretability in Vision Models

Roland S. Zimmermann, Thomas Klein, Wieland Brendel

45

Alternation makes the adversary weaker in two-player games

Volkan Cevher, Ashok Cutkosky, Ali Kavis, Georgios Piliouras, Stratis Skoulakis, Luca Viano

46

A Holistic Approach to Unifying Automatic Concept Extraction and Concept Importance Estimation

Thomas FEL, Victor Boutin, Louis Béthune, Remi Cadene, Mazda Moayeri, Léo Andéol, Mathieu Chalvidal, Thomas Serre

47

Sharp Spectral Rates for Koopman Operator Learning

Vladimir R Kostic, Karim Lounici, Pietro Novelli, massimiliano pontil

48

Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models

Siu Lun Chau, Krikamol MuandetDino Sejdinovic

49

SE(3) Equivariant Augmented Coupling Flows

Laurence Illing Midgley, Vincent Stimper, Javier Antoran, Emile Mathieu, Bernhard SchölkopfJosé Miguel Hernández-Lobato

50

Regularization properties of adversarially-trained linear regression

Antonio H. Ribeiro, Dave Zachariah, Francis Bach, Thomas B. Schön

51

MMD-Fuse: Learning and Combining Kernels for Two-Sample Testing Without Data Splitting

Felix Biggs, Antonin Schrab, Arthur Gretton

52

Leveraging sparse and shared feature activations for disentangled representation learning

Marco Fumero, Florian Wenzel, Luca Zancato, Alessandro Achille, Emanuele Rodolá , Stefano Soatto, Bernhard SchölkopfFrancesco Locatello

53

ID and OOD Performance Are Sometimes Inversely Correlated on Real-world Datasets

Damien Teney, LIN Yong, Seong Joon Oh, Ehsan Abbasnejad

54

Tree-Based Diffusion Schrödinger Bridge with Applications to Wasserstein Barycenters

Maxence Noble, Valentin De Bortoli, Arnaud Doucet, Alain Durmus

55

Episodic Multi-Task Learning with Heterogeneous Neural Processes

Jiayi Shen, Xiantong Zhen, Cheems Wang, Marcel Worring

56

Squared Neural Families: A New Class of Tractable Density Models

Russell Tsuchida, Cheng Soon Ong, Dino Sejdinovic

57

Kronecker-Factored Approximate Curvature for Modern Neural Network Architectures

Runa Eschenhagen, Alexander Immer, Richard E Turner, Frank Schneider, Philipp Hennig

58

Honesty Is the Best Policy: Defining and Mitigating AI Deception

Francis Rhys Ward, Francesca Toni, Francesco Belardinelli, Tom Everitt

59

Timewarp: Transferable Acceleration of Molecular Dynamics by Learning Time-Coarsened Dynamics

Leon Klein, Andrew Y. K. Foong, Tor Erlend Fjelde, Bruno Kacper Mlodozeniec, Marc Brockschmidt, Sebastian Nowozin, Frank Noe, Ryota Tomioka

60

In-Context Impersonation Reveals Large Language Models' Strengths and Biases

Leonard Salewski, Stephan Alaniz, Isabel Rio-Torto, Eric SchulzZeynep Akata

61

Participatory Personalization in Classification

Hailey James, Chirag Nagpal, Katherine A Heller, Berk Ustun

62

Zero-shot causal learning

Hamed Nilforoshan, Michael Moor, Yusuf H Roohani, Yining Chen, Anja Å urina, Michihiro Yasunaga, Sara Oblak, Jure Leskovec

63

Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity Model

Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel

64

Dense and Aligned Captions (DAC) Promote Compositional Reasoning in VL Models

Sivan Doveh, Assaf Arbelle, Sivan Harary, Roei Herzig, Donghyun Kim, Paola Cascante-Bonilla, Amit Alfassy, Rameswar Panda, Raja Giryes, Rogerio Feris, Shimon Ullman, Leonid Karlinsky

65

One-step differentiation of iterative algorithms

Jerome Bolte, Edouard Pauwels, Samuel Vaiter

66

Physics-Driven ML-Based Modelling for Correcting Inverse Estimation

Ruiyuan Kang, Tingting Mu, Panos Liatsis, Dimitrios Kyritsis

67

AbDiffuser: full-atom generation of in-vitro functioning antibodies

Karolis Martinkus, Jan Ludwiczak, WEI-CHING LIANG, Julien Lafrance-Vanasse, Isidro Hotzel, Arvind Rajpal, Yan Wu, Kyunghyun Cho, Richard Bonneau, Vladimir Gligorijevic, Andreas Loukas

68

The Exact Sample Complexity Gain from Invariances for Kernel Regression

Behrooz Tahmasebi, Stefanie Jegelka

69

Compression with Bayesian Implicit Neural Representations

Zongyu Guo, Gergely Flamich, Jiajun He, Zhibo Chen, JoséMiguel Hernández-Lobato

70

A Cross-Moment Approach for Causal Effect Estimation

Yaroslav Kivva, Saber Salehkaleybar, Negar Kiyavash

71

The Goldilocks of Pragmatic Understanding: Fine-Tuning Strategy Matters for Implicature Resolution by LLMs

Laura Eline Ruis, Akbir Khan, Stella Biderman, Sara Hooker, Tim RocktäschelEdward Grefenstette

72

What Makes Data Suitable for a Locally Connected Neural Network? A Necessary and Sufficient Condition Based on Quantum Entanglement.

Yotam Alexander, Nimrod De La Vega, Noam Razin, Nadav Cohen

73

Learning to Receive Help: Intervention-Aware Concept Embedding Models

Mateo Espinosa Zarlenga, Katherine M. Collins, Krishnamurthy Dj Dvijotham, Adrian Weller, Zohreh Shams, Mateja Jamnik

74

QuantSR: Accurate Low-bit Quantization for Efficient Image Super-Resolution

Haotong Qin, Yulun Zhang, Yifu Ding, Yifan liu, Xianglong Liu, Martin Danelljan, Fisher Yu

75

From Pixels to UI Actions: Learning to Follow Instructions via Graphical User Interfaces

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi Khandelwal, Kenton Lee, Kristina Toutanova

76

Efficient Online Clustering with Moving Costs

Dimitris Christou, EFSTRATIOS PANTELEIMON SKOULAKIS, Volkan Cevher

77

Learning Functional Transduction

Mathieu Chalvidal, Thomas SerreRufin VanRullen

78

Computing a human-like reaction time metric from stable recurrent vision models

Lore Goetschalckx, Lakshmi Narasimhan Govindarajan, Alekh Karkada Ashok, Aarit Ahuja, David Sheinberg, Thomas Serre

 

NeurIPS 2023 oral

#

Paper Title

List of authors (ELLIS members in bold)

1

Ordering-based Conditions for Global Convergence of Policy Gradient Methods

Jincheng Mei, Bo Dai, Alekh Agarwal, Mohammad Ghavamzadeh, Csaba Szepesvari, Dale Schuurmans

2

A Measure-Theoretic Axiomatisation of Causality

Junhyung Park, Simon Buchholz, Bernhard SchölkopfKrikamol Muandet

3

Learning Linear Causal Representations from Interventions under General Nonlinear Mixing

Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, Pradeep Kumar Ravikumar

4

Clifford Group Equivariant Neural Networks

David Ruhe, Johannes BrandstetterPatrick Forré

5

Abide by the law and follow the flow: conservation laws for gradient flows

Sibylle Marcotte, Rémi Gribonval, Gabriel Peyré

6

Rotating Features for Object Discovery

Sindy Löwe, Phillip Lippe, Francesco LocatelloMax Welling

7

Entropic Neural Optimal Transport via Diffusion Processes

Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P. Vetrov, Evgeny Burnaev

8

A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods

Veit David Wild, Sahra Ghalebikesabi, Dino SejdinovicJeremias Knoblauch

9

Improved Algorithms for Stochastic Linear Bandits Using Tail Bounds for Martingale Mixtures

Hamish Flynn, David Reeb, Melih KandemirJan Peters

10

Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent

Jihao Andreas Lin, Javier Antoran, Shreyas Padhy, David Janz, José Miguel Hernández-Lobato, Alexander Terenin

11

How to Turn Your Knowledge Graph Embeddings into Generative Models

Lorenzo Loconte, Nicola Di Mauro, Robert PeharzAntonio Vergari

12

Causal normalizing flows: from theory to practice

Adrián Javaloy, Pablo Sanchez Martin, Isabel Valera

13

A U-turn on Double Descent: Rethinking Parameter Counting in Statistical Learning

Alicia Curth, Alan Jeffares, Mihaela van der Schaar

14

Online RL in Linearly q^\pi-Realizable MDPs Is as Easy as in Linear MDPs If You Learn What to Ignore

Gellért Weisz, András GyörgyCsaba Szepesvari

15

Direct Preference Optimization: Your Language Model is Secretly a Reward Model

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, Chelsea Finn

16

Linguistic Binding in Diffusion Models: Enhancing Attribute Correspondence through Attention Map Alignment

Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Ravfogel, Yoav GoldbergGal Chechik

17

Characteristic Circuits

Zhongjie Yu, Martin TrappKristian Kersting

18

DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative Diffusion Models

Tsun-Hsuan Wang, Juntian Zheng, Pingchuan Ma, Yilun Du, Byungchul Kim, Andrew Everett Spielberg, Joshua B. Tenenbaum, Chuang Gan, Daniela Rus

19

Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face Recognition

Samuel Dooley, Rhea Sanjay Sukthanker, John P Dickerson, Colin White, Frank Hutter, Micah Goldblum

20

Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models

Guillermo Ortiz-Jimenez, Alessandro Favero, Pascal Frossard

21

Going beyond persistent homology using persistent homology

Johanna Immonen, Amauri Souza, Vikas Garg

 

 

NeurIPS 2023 Datasets and Benchmarks Poster

#

Paper Title

List of authors (ELLIS members in bold)

1

AllSim: Simulating and Benchmarking Resource Allocation Policies in Multi-User Systems

Jeroen Berrevoets, Daniel Jarrett, Alex James Chan, Mihaela van der Schaar

2

PIXIU: A Comprehensive Benchmark, Instruction Dataset and Large Language Model for Finance

Qianqian Xie, Weiguang Han, Xiao Zhang, Yanzhao Lai, Min Peng, Alejandro Lopez-Lira, Jimin Huang

3

A Performance-Driven Benchmark for Feature Selection in Tabular Deep Learning

Valeriia Cherepanova, Roman Levin, Gowthami Somepalli, Jonas Geiping, C. Bayan Bruss, Andrew Gordon Wilson, Tom Goldstein, Micah Goldblum

4

Synthcity: a benchmark framework for diverse use cases of tabular synthetic data

Zhaozhi Qian, Rob Davis, Mihaela van der Schaar

5

Temporal Graph Benchmark for Machine Learning on Temporal Graphs

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi, Jure Leskovec, Michael M. Bronstein, Guillaume Rabusseau, Reihaneh Rabbany

6

FIND: A Function Description Benchmark for Evaluating Interpretability Methods

Sarah Schwettmann, Tamar Rott Shaham, Joanna Materzynska, Neil Chowdhury, Shuang Li, Jacob Andreas, David Bau, Antonio Torralba

7

Revisiting Evaluation Metrics for Semantic Segmentation: Optimization and Evaluation of Fine-grained Intersection over Union

Zifu Wang, Maxim Berman, Amal Rannen-Triki, Philip Torr, Devis TuiaTinne TuytelaarsLuc Van Gool, Jiaqian Yu, Matthew B. Blaschko

8

AVeriTeC: A Dataset for Real-world Claim Verification with Evidence from the Web

Michael Sejr Schlichtkrull, Zhijiang Guo, Andreas Vlachos

9

URL: A Representation Learning Benchmark for Transferable Uncertainty Estimates

Michael Kirchhof, Bálint Mucsányi, Seong Joon Oh, Enkelejda Kasneci

10

Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A Comprehensive Benchmark

Lasse Hansen, Nabeel Seedat, Mihaela van der Schaar, Andrija Petrovic

11

VidChapters-7M: Video Chapters at Scale

Antoine Yang, Arsha Nagrani, Ivan LaptevJosef SivicCordelia Schmid

12

QATCH: Benchmarking SQL-centric tasks with Table Representation Learning Models on Your Data

Simone Papicchio, Paolo Papotti, Luca Cagliero

13

Learning to Taste: A Multimodal Wine Dataset

Thoranna Bender, Simon Moe Sørensen, Alireza Kashani, Kristjan Eldjarn Hjorleifsson, Grethe Hyldig, Søren HaubergSerge Belongie, Frederik Rahbæk Warburg

14

ProteinGym: Large-Scale Benchmarks for Protein Fitness Prediction and Design

Pascal Notin, Aaron W Kollasch, Daniel Ritter, Lood Van Niekerk, Steffan Paul, Han Spinner, Nathan J Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, Jonathan Frazer, Mafalda Dias, Dinko Franceschi, Yarin Gal, Debora Susan Marks

15

Learning Human Action Recognition Representations Without Real Humans

Howard Zhong, Samarth Mishra, Donghyun Kim, SouYoung Jin, Rameswar Panda, Hilde Kuehne, Leonid Karlinsky, Venkatesh Saligrama, Aude Oliva, Rogerio Feris

16

OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents

Hugo Laurençon, Lucile Saulnier, Leo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M Rush, Douwe Kiela, Matthieu Cord, Victor Sanh

17

FLAIR : a Country-Scale Land Cover Semantic Segmentation Dataset From Multi-Source Optical Imagery

Anatol Garioud, Nicolas Gonthier, Loic Landrieu, Apolline De Wit, Marion Valette, Marc Poupée, Sebastien Giordano, Boris Wattrelos

18

DataPerf: Benchmarks for Data-Centric AI Development

Mark Mazumder, Colby Banbury, Xiaozhe Yao, Bojan KarlaÅ¡, William A Gaviria Rojas, Sudnya Diamos, Greg Diamos, Lynn He, Alicia Parrish, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Douwe Kiela, David Jurado, David Kanter, Rafael Mosquera, Will Cukierski, Juan Ciro, Lora Aroyo, Bilge Acun, Lingjiao Chen, Mehul Smriti Raje, Max Bartolo, Sabri Eyuboglu, Amirata Ghorbani, Emmett Daniel Goodman, Addison Howard, Oana Inel, Tariq Kane, Christine Kirkpatrick, D. Sculley, Tzu-Sheng Kuo, Jonas Mueller, Tristan Thrush, Joaquin Vanschoren, Margaret Warren, Adina Williams, Serena Yeung, Newsha Ardalani, Praveen Paritosh, Ce Zhang, James Y. Zou, Carole-Jean Wu, Cody Coleman, Andrew Ng, Peter Mattson, Vijay Janapa Reddi

19

The Drunkard´s Odometry: Estimating Camera Motion in Deforming Scenes

David Recasens, Martin R. Oswald, Marc Pollefeys, Javier Civera

20

GEO-Bench: Toward Foundation Models for Earth Monitoring

Alexandre Lacoste, Nils Lehmann, Pau Rodriguez, Evan David Sherwin, Hannah Kerner, Björn Lütjens, Jeremy Andrew Irvin, David Dao, Hamed Alemohammad, Alexandre Drouin, Mehmet Gunturkun, Gabriel Huang, David Vazquez, Dava Newman, Yoshua Bengio, Stefano Ermon, Xiao Xiang Zhu

21

Perception Test: A Diagnostic Benchmark for Multimodal Video Models

Viorica Patraucean, Lucas Smaira, Ankush Gupta, Adria Recasens Continente, Larisa Markeeva, Dylan Sunil Banarse, Skanda Koppula, Joseph Heyward, Mateusz Malinowski, Yi Yang, Carl Doersch, Tatiana Matejovicova, Yury Sulsky, Antoine Miech, Alexandre Fréchette, Hanna Klimczak, Raphael Koster, Junlin Zhang, Stephanie Winkler, Yusuf Aytar, Simon Osindero, Dima DamenAndrew Zisserman, Joao Carreira

22

StoryBench: A Multifaceted Benchmark for Continuous Story Visualization

Emanuele Bugliarello, Hernan Moraldo, Ruben Villegas, Mohammad Babaeizadeh, Mohammad Taghi Saffar, Han Zhang, Dumitru Erhan, Vittorio Ferrari, Pieter-Jan Kindermans, Paul Voigtlaender

23

What a MESS: Multi-Domain Evaluation of Zero-Shot Semantic Segmentation

Benedikt Blumenstiel, Johannes Jakubik, Hilde Kuehne, Michael Vössing

24

Estimating Generic 3D Room Structures from 2D Annotations

Denys Rozumnyi, Stefan Popov, Kevis-kokitsi Maninis, Matthias NießnerVittorio Ferrari

25

NAVI: Category-Agnostic Image Collections with High-Quality 3D Shape and Pose Annotations

Varun Jampani, Kevis-kokitsi Maninis, Andreas Engelhardt, Arjun Karpur, Karen Truong, Kyle Sargent, Stefan Popov, Andre Araujo, Ricardo Martin Brualla, Kaushal Patel, Daniel Vlasic, Vittorio Ferrari, Ameesh Makadia, Ce Liu, Yuanzhen Li, Howard Zhou

26

Humans in Kitchens: A Dataset for Multi-Person Human Motion Forecasting with Scene Context

Julian Alexander Tanke, Oh-Hun Kwon, Felix Benjamin Mueller, Andreas Doering, Juergen Gall

27

SMACv2: An Improved Benchmark for Cooperative Multi-Agent Reinforcement Learning

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob Nicolaus Foerster, Shimon Whiteson

28

Physion++: Evaluating Physical Scene Understanding that Requires Online Inference of Different Physical Properties

Hsiao-Yu Tung, Mingyu Ding, Zhenfang Chen, Daniel Bear, Chuang Gan, Joshua B. Tenenbaum, Daniel LK Yamins, Judith E Fan, Kevin A. Smith

29

Benchmarking Robustness of Adaptation Methods on Pre-trained Vision-Language Models

Shuo Chen, Jindong Gu, Zhen Han, Yunpu Ma, Philip Torr, Volker Tresp

30

ClimateSet: A Large-Scale Climate Model Dataset for Machine Learning

Julia Kaltenborn, Charlotte Emilie Elektra Lange, Venkatesh Ramesh, Philippe Brouillard, Yaniv Gurwicz, Chandni Nagda, Jakob Runge, Peer Nowack, David Rolnick

31

ProteinShake: Building datasets and benchmarks for deep learning on protein structures

Tim Kucera, Carlos Oliver, Dexiong Chen, Karsten Borgwardt

32

EPIC Fields: Marrying 3D Geometry and Video Understanding

Vadim Tschernezki, Ahmad Darkhalil, Zhifan Zhu, David Fouhey, Iro Laina, Diane Larlus, Dima DamenAndrea Vedaldi

 

NeurIPS 2023 Datasets and Benchmarks Spotlight

#

Paper Title

List of authors (ELLIS members in bold)

1

Holistic Evaluation of Text-to-Image Models

Tony Lee, Michihiro Yasunaga, Chenlin Meng, Yifan Mai, Joon Sung Park, Agrim Gupta, Yunzhi Zhang, Deepak Narayanan, Hannah Benita Teufel, Marco Bellagente, Minguk Kang, Taesung Park, Jure Leskovec, Jun-Yan Zhu, Li Fei-Fei, Jiajun Wu, Stefano Ermon, Percy Liang

2

Renku: a platform for sustainable data science

Rok Roškar, Chandrasekhar Ramakrishnan, Michele Volpi, Fernando Perez-Cruz, Lilian Gasser, Firat Ozdemir, Patrick Paitz, Mohammad Alisafaee, Philipp Fischer, Ralf Grubenmann, Eliza Jean Harris, Tasko Olevski, Carl Remlinger, Luis Salamanca, Elisabet Capon Garcia, Lorenzo Cavazzi, Jakub Chrobasik, Darlin Andrea Cordoba Osnas, Alessandro Degano, Jimena Dupre, Wesley Johnson, Eike Kettner, Laura Kinkead, Sean Murphy, Flora Thiebaut, Olivier Verscheure

3

DiffInfinite: Large Mask-Image Synthesis via Parallel Random Patch Diffusion in Histopathology

Marco Aversa, Gabriel Nobis, Miriam Hägele, Kai Standvoss, Mihaela Chirica, Roderick Murray-Smith, Ahmed Alaa, Lukas Ruff, Daniela Ivanova, Wojciech Samek, Frederick Klauschen, Bruno Sanguinetti, Luis Oala

4

The Waymo Open Sim Agents Challenge

Nico Montali, John Lambert, Paul Mougin, Alex Kuefler, Nicholas Rhinehart, Michelle Li, Cole Gulino, Tristan Emrich, Zoey Zeyu Yang, Shimon Whiteson, Brandyn White, Dragomir Anguelov

 

 

NeurIPS 2023 Datasets and Benchmarks Oral

#

Paper Title

List of authors (ELLIS members in bold)

1

DataComp: In search of the next generation of multimodal datasets

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis Daras, Sarah M Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, Ludwig Schmidt

2

ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation

Sungduk Yu, Walter Hannah, Liran Peng, Jerry Lin, Mohamed Aziz Bhouri, Ritwik Gupta, Björn Lütjens, Justus Christopher Will, Gunnar Behrens, Julius Busecke, Nora Loose, Charles I Stern, Tom Beucler, Bryce Harrop, Benjamin R Hillman, Andrea Jenney, Savannah Ferretti, Nana Liu, Anima Anandkumar, Noah D Brenowitz, Veronika Eyring, Nicholas Geneva, Pierre Gentine, Stephan Mandt, Jaideep Pathak, Akshay Subramaniam, Carl Vondrick, Rose Yu, Laure Zanna, Tian Zheng, Ryan Abernathey, Fiaz Ahmed, David C Bader, Pierre Baldi, Elizabeth Barnes, Christopher Bretherton, Peter Caldwell, Wayne Chuang, Yilun Han, YU HUANG, Fernando Iglesias-Suarez, Sanket Jantre, Karthik Kashinath, Marat Khairoutdinov, Thorsten Kurth, Nicholas Lutsko, Po-Lun Ma, Griffin Mooers, J. David Neelin, David Randall, Sara Shamekh, Mark A Taylor, Nathan Urban, Janni Yuval, Guang Zhang, Michael Pritchard

3

Mesogeos: A multi-purpose dataset for data-driven wildfire modeling in the Mediterranean

Spyros Kondylatos, Ioannis Prapas, Gustau Camps-Valls, Ioannis Papoutsis