ELLIS Pre-NeurIPS Fest 2023


11 ELLIS units across Europe organized pre-NeurIPS poster sessions to showcase and discuss their research community's contributions to the flagship conference in New Orleans.

Find below a list of posters presented at some of those events.

Poster Title

Author List

ELLIS Unit Darmstadt

 

LocoMuJoCo: A Comprehensive Imitation Learning Benchmark for Locomotion

Al-Hafez, Firas; Zhao, Guoping; Peters, Jan; Tateo, Davide

Tactile Active Texture Recognition With Vision-Based Tactile Sensors

Boehm, Alina; Schneider, Tim; Belousov, Boris; Kshirsagar, Alap; Lin, Lisa; Doerschner, Katja; Drewing, Knut; Rothkopf, Constantin A.; Peters, Jan

SEGA: Instructing Text-to-Image Models using Semantic Guidance

Brack, Manuel; Friedrich, Felix; Hintersdorf, Dominik; Struppek, Lukas; Schramowski, Patrick; Kersting, Kristian

Pseudo-Likelihood Inference

Gruner, Theo; Belousov, Boris; Muratore, Fabio; Palenicek, Daniel; Peters, Jan

Leveraging Diffusion-Based Image Variations for Robust Training on Poisoned Data

Struppek, Lukas; Hentschel, Martin B.; Poth, Clifton; Hintersdorf, Dominik; Kersting, Kristian

Do Not Marginalize Mechanisms, Rather Consolidate!

Willig, Moritz; Zečević, Matej; Dhami, Devendra; Kersting, Kristian

Characteristic Circuits

Yu, Zhongjie; Trapp, Martin; Kersting, Kristian

ELLIS Unit Helsinki

 

Characteristic Circuits

Zhongjie Yu · Martin Trapp · Kristian Kersting

Compositional Sculpting of Iterative Generative Processes

Timur Garipov · Sebastiaan De Peuter · Ge Yang · Vikas Garg · Samuel Kaski · Tommi Jaakkola

Conditional Mutual Information for Disentangled Representations in Reinforcement Learning

Mhairi Dunion · Trevor McInroe · Kevin Sebastian Luck · Josiah Hanna · Stefano Albrecht

Continuous-Time Functional Diffusion Processes

Giulio Franzese · Giulio Corallo · Simone Rossi · Markus Heinonen · Maurizio Filippone · Pietro Michiardi

Going beyond persistent homology using persistent homology

Johanna Immonen · Amauri Souza · Vikas Garg

Learning Robust Statistics for Simulation-based Inference under Model Misspecification

Daolang Huang · Ayush Bharti · Amauri Souza · Luigi Acerbi · Samuel Kaski

Learning Space-Time Continuous Latent Neural PDEs from Partially Observed States

Valerii Iakovlev · Markus Heinonen · Harri Lähdesmäki

Practical Differentially Private Hyperparameter Tuning with Subsampling

Antti Koskela · Tejas Kulkarni

Practical Equivariances via Relational Conditional Neural Processes

Daolang Huang · Manuel Haussmann · Ulpu Remes · ST John · Grégoire Clarté · Kevin Sebastian Luck · Samuel Kaski · Luigi Acerbi

Provable benefits of annealing for estimating normalizing constants: Importance Sampling, Noise-Contrastive Estimation, and beyond

Omar Chehab · Aapo Hyvarinen · Andrej Risteski

Temporal Causal Mediation through a Point Process: Direct and Indirect Effects of Healthcare Interventions

Çağlar Hızlı · ST John · Anne Juuti · Tuure Saarinen · Kirsi Pietiläinen · Pekka Marttinen

Thin and deep Gaussian processes

Daniel Augusto de Souza · Alexander Nikitin · ST John · Magnus Ross · Mauricio A Álvarez · Marc Deisenroth · João Paulo Gomes · Diego Mesquita · César Lincoln Mattos

LART: Neural Correspondence Learning with Latent Regularization Transformer for 3D Motion Transfer

Haoyu Chen, Hao Tang, Radu Timofte, Luc V Gool, Guoying Zhao

ELLIS Unit Manchester

 

Physics-Driven ML-Based Modeling for Correcting Inverse Estimation

Kang, Ruiyuan; Mu, Tingting; Liatsis, Panos; Kyritsis, Dimitrios C.

Bi-directional Distribution Alignment for Transductive Zero-Shot Learning

Zhicai Wang, Yanbin Hao, Tingting Mu, Ouxiang Li, Shuo Wang, Xiangnan He

On the Modelling and Impact of Negative Edges in Graph Convolution Networks for Node Classification

Thu Trang Dinh · Julia Handl · Luis Ospina-Forero.

Understanding and Improving Ensemble Adversarial Defense

Yian Deng, Tingting Mu

SMACv2: An Improved Benchmark for Cooperative Reinforcement Learning

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob N. Foerster, Shimon Whiteson

ELLIS Unit Milan

 

Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach

Riccardo Poiani, Nicole Nobili, Alberto Maria Metelli, Marcello Restelli

Distributional Policy Evaluation: a Maximum Entropy approach to Representation Learning

Riccardo Zamboni, Alberto Maria Metelli, M. Restelli

On the Minimax Regret for Online Learning with Feedback Graphs

Khaled Eldowa, Emmanuel Esposito, Tom Cesari, Nicolò Cesa-Bianchi

Persuading Farsighted Receivers in MDPs: the Power of Honesty

Martino Bernasconi, Matteo Castiglioni, Alberto Marchesi, Mirco Mutti

Computing Optimal Equilibria and Mechanisms via Learning in Zero-Sum Extensive-Form Games

Brian Hu Zhang, Gabriele Farina, Ioannis Anagnostides, Federico Cacciamani, Stephen Marcus McAleer, Andreas Alexander Haupt, Andrea Celli, Nicola Gatti, Vincent Conitzer, Tuomas Sandholm

ELLIS Unit Trento

 

Flow Factorized Representation Learning, NeurIPS 2023

Y. Song, A. Keller, N. Sebe, and M. Welling

Discover and Align Taxonomic Context Priors for Open-world Semi-Supervised Learning, NeurIPS 2023

Y. Wang, Z. Zhong, P. Qiao, X. Cheng, X. Zheng, C. Liu, N. Sebe, R. Ji, and J. Chen

Vocabulary-free Image Classification, NeurIPS 2023

A. Conti, E. Fini, M. Mancini, P. Rota, Y. Wang, E. Ricci.

Not All Neuro-Symbolic Concepts Are Created Equal: Analysis and Mitigation of Reasoning Shortcuts, NeurIPS 2023

E. Marconato, S. Teso, A. Vergari, A. Passerini

Transitivity Recovering Decompositions: Interpretable and Robust Fine-Grained Relationships, NeurIPS 2023

A. Chaudhuri, M. Mancini, Z. Akata, A. Dutta,

ELLIS Unit Tübingen

 

Causal Component Analysis

Liang Wendong, Armin Kekić, Julius von Kügelgen, Simon Buchholz, Michel Besserve, Luigi Gresele, Bernhard Schölkopf

Regularity as Intrinsic Reward for Free Play

Cansu Sancaktar, Justus Piater, Georg Martius

Beyond Average Return in Markov Decision Processes

Alexandre Marthe, Aurélien Garivier, Claire Vernade

Reinforcement Learning with Simple Sequence Priors

Tankred Saanum, Noemi Elteto, Peter Dayan, Marcel Binz, Eric Schulz

RDumb: A simple approach that questions our progress in continual test-time adaptation

Ori Press, Steffen Schneider, Matthias Kümmerer, Matthias Bethge

Online Learning under Adversarial Nonlinear Constraints

Pavel Kolev, Georg Martius, Michael Muehlebach

Object-Centric Learning for Real-World Videos by Predicting Temporal Feature Similarities

Andrii Zadaianchuk, Maximilian Seitzer, Georg Martius

Compositional Generalization from First Principles

Thaddäus Wiedemer, Prasanna Mayilvahanan, Matthias Bethge, Wieland Brendel

Scale Alone Does not Improve Mechanistic Interpretability

Roland S. Zimmermann, Thomas Klein, Wieland Brendel

Controlling Text-to-Image Diffusion by Orthogonal Finetuning

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller, Bernhard Schölkopf

In-Context Impersonation Reveals Large Language Models' Strengths and Biases

Leonard Salewski, Isabel Rio-Torto, Stephan Alaniz, Eric Schulz, Zeynep Akata

Tree-Rings Watermarks: Invisible Fingerprints for Diffusion Images

Yuxin Wen, John Kirchenbauer, Jonas Geiping, Tom Goldstein

SE(3) Equivariant Augmented Coupling Flows

Laurence Midgley, Vincent Stimper, Javier Antorán, Emile Mathieu, Bernhard Schölkopf, José Miguel Hernández-Lobato

Modulated Neural ODEs

Ilze Amanda Auzina, Çağatay Yıldız, Sara Magliacane, Matthias Bethge, Efstratios Gavves

Generalized Bayesian Inference for Scientific Simulators via Amortized Cost Estimation

Richard Gao, Michael Deistler, Jakob H Macke

Flow Matching for Scalable Simulation-Based Inference

Maximilian Dax, Jonas Wildberger, Simon Buchholz, Stephen R. Green, Jakob H. Macke, Bernhard Schölkopf

URL: A Representation Learning Benchmark for Transferable Uncertainty Estimates

Michael Kirchhof, Bálint Mucsányi, Seong Joon Oh, Dr. Enkelejda Kasneci

ELLIS Unit Warsaw

 

Bucks for Buckets (B4B): Active Defenses Against Stealing Encoders

Jan Dubiński, Stanisław Pawlak, Franziska Boenisch, Tomasz Trzciński, Adam Dziedzic

The Tunnel Effect: Building Data Representations in Deep Neural Networks

Wojciech Masarczyk, Mateusz Ostaszewski, Ehsan Imani, Razvan Pascanu, Piotr Miłoś, Tomasz Trzciński

Focused Transformer: Contrastive Training for Context Scaling

Szymon Tworkowski, Konrad Staniszewski, Mikołaj Pacek, Yuhuai Wu, Henryk Michalewski, Piotr Miłoś

Trust Your : Gradient-based Intervention Targeting for Causal Discovery

Mateusz Olko, Michał Zając, Aleksandra Nowak, Nino Scherrer, Yashas Annadani, Stefan Bauer, Łukasz Kuciński, Piotr Miłoś

Revisiting Supervision for Continual Representation Learning

Daniel Marczak, Sebastian Cygert, Tomasz Trzciński, Bartłomiej Twardowski

Augmentation-aware Self-supervised Learning with Conditioned Projector

Marcin Przewięźlikowski, Mateusz Pyla, Bartosz Zieliński, Bartłomiej Twardowski, Jacek Tabor

ELLIS Unit Zurich

 

From SGD to Adaptive Methods: Benefits of Adaptive Gradient Techniques

Junchi Yang, Xiang Li, Ilyas Fatkhullin, Niao He

Parameter-Agnostic Optimization under Relaxed Smoothness

Florian Hübler, Junchi Yang, Xiang Li, Niao He

Optimal Guarantees for Algorithmic Reproducibility and Gradient Complexity in Convex Optimization

Liang Zhang, Junchi Yang, Amin Karbasi, Niao He

Scaling MLPs: A Tale of Inductive Bias

Gregor Bachmann, Sotiris Anagnostidis, Thomas Hofmann

Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers

Solis Angosi, Dario Paulo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, Thomas Hofmann

The Shaped Transformer:Attention Models in the Infinite Depth-and-Width Limit at Initialization

Lorenzo Noci, Chuning Li, Mufan (Bill) Li, Bobby He, Thomas Hofmann, Chris Maddison, Daniel Roy

On the Importance of Step-wise Embeddings...

Rita Kuznetsova, Alizée Pace, Manuel Burger, Hugo Yèche, Gunnar Rätsch

Multi-modal Graph Learning over UMLS Knowledge Graphs

Manuel Burger, Gunnar Rätsch, Rita Kuznetsova